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Abstract

Background Temporary anchorage devices (TADs) are maximum anchorages that have been widely used in ortho-
dontic treatment. The aim of the study was to uncover whether a history of periodontitis would influence microbi-
ome colonization on the TAD surface.

Results Patients were grouped by periodontal evaluations before the orthodontic treatment. Patients with healthy
periodontal conditions were classified as the healthy group, and patients diagnosed with periodontitis stage Il or even
worse were classified as the periodontitis group. Scanning electron microscopy (SEM) was used to analyze the exist-
ence of biofilm on the surface of 4 TADs from the healthy group and 4 TADs from the periodontitis group. Fifteen TADs
from the healthy group and 12 TADs from the periodontitis group were collected. The microorganisms on the surface
of TADs were harvested and analyzed by 16S rRNA gene sequencing. a-diversity indices and (3-diversity indices were
calculated. Wilcoxon's test was used to determine differences between genera, species as well as KEGG functions. SEM
analysis revealed bacteria colonization on the surface of TADs from both groups. Principal coordinate analysis (PCoA)
based on (3 diversity revealed differential sample clusters depending on periodontal conditions (P<0.01). When
comparing specific genera, Fusobacterium, Porphyromonas, Saccharibacteria_(TM7)_[G-1], Dialister, Parvimonas, Freti-
bacterium, Treponema were more enriched in TADs in the periodontitis group. In the KEGG analysis, TADs in the peri-
odontitis group demonstrated enriched microbial activities involved with translation, genetic information processing,
metabolism, and cell motility.

Conclusions This analysis elucidated the difference in total composition and function of TADs oral microorganisms
between patients periodontally healthy and with periodontitis.
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Introduction

Anchorage control has been a major concern for ortho-
dontists for decades. As maximum anchorage or skel-
etal anchorage, the temporary anchorage devices (TADs)
have been well received since their appearance. This
device facilitates anchorage reinforcement compared
to conventional anchorage control and has great advan-
tages in flexibility, versatility, minimal invasiveness, and
independence of patient compliance [1, 2]. It is particu-
larly indicated in anterior en masse retraction, molar
protraction, as well as the intrusion of supra-erupted
teeth, and midline correction [3]. However, on some
occasions, TADs present excessive mobility which even-
tually leads to loss of anchorage. Though the failure rate
of TADs is generally considered under 5-15% [4, 5], the
rising demand for TADs in clinical use significantly gives
rise to more individuals suffering from postoperation
complications.

TADs are implanted in the alveolar bone between
dental roots and are exposed to all sorts of oral micro-
organisms. Once inserted, an artificial sulcus is created,
allowing for the invasion of the oral microbiome. It is
probable that periodontal pathogens could penetrate
the epithelial junction and induce inflammation around
TADs, which might further lead to their failure [6, 7].
Several attempts have been made to the observation of
biofilm attached to the surface of TADs. Ferreira et al.
revealed biofilm existence on the head, transmucosal, and
body segments of the TADs through scanning electron
microscopy (SEM) [8]. With the utilization of fluores-
cence imaging, Garcez et al. observed higher fluorescent
intensity in inflamed TADs with redness on surrounding
tissues [9]. Although some studies attempted to explain
the failure of TADs through the discovery of well-known
periodontal pathogens, there is controversy in whether
the oral microbiome plays a pivotal role [10-12]. Studies
showing the full picture of the microbiome of TADs are
still lacking.

Periodontitis is a multifactorial inflammatory disease
that is initiated by subgingival dental biofilm and even-
tually causes the irreversible destruction of the peri-
odontium [13]. MicroRNAs, transglutaminases, and
circulating cells are all considered important modula-
tors in the development of periodontitis [14—18]. Rou-
tine treatment of periodontitis includes root scaling and
planing (RSP) and surgical intervention. Coadjuvant
use of antibiotics and immune response modulators,
for instance, cyclosporine A and tacrolimus, has been
brought to light in the treatment sequence [19, 20].

As more and more patients with periodontitis are seek-
ing orthodontic treatment today, there is an elevated
use of TADs in orthodontic patients with a history of
periodontitis. Subgingival periodontal pathogens might
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migrate into TAD insertion sites and cause inflamma-
tion of surrounding soft and hard tissue, as analogous
to peri-implantitis [21, 22]. In this study, we hypothesize
that there is a difference in the adhesion of pathogenic
oral microorganisms around TADs from patients with
healthy periodontal conditions or patients with a history
of periodontitis.

This analysis takes the form of a pilot study of the
microbiome on the surface of TADs between orthodon-
tic patients with healthy periodontal conditions and with
a history of periodontitis. We employed 16S rRNA gene
sequencing to analyze the microbiome, as it could detect
population diversity, identify the structure of the micro-
biome, and predict functional roles on certain occasions
[23]. The aim of the study was to uncover whether a his-
tory of periodontitis would influence microbiome colo-
nization on the TAD surface. This study highlights how
periodontal conditions influence the microbiome com-
munity on the surface of TADs.

Materials and methods

Participant selection and sample collection

All of the subjects in this study participated in orthodon-
tics treatments in Peking University Hospital of Stoma-
tology. In all of them, the use of orthodontic anchorage
was indicated. Each participant signed an informed con-
sent form to enroll in the trial. This analysis was ratified
by the Ethics Committee of the Peking University Hos-
pital of Stomatology under PKUSSIRB-202060204. All
methods were carried out following relevant guidelines
and regulations.

In this analysis, periodontitis patients were classified in
periodontitis stage II or even worse (interdental clinical
attachment loss (CAL) at sites of greatest loss> =3 mm,
radiographic bone loss> =15% of the root) according to
the 2017 classification [24]. At their initial visits, their
maximum probing depth was> =5 mm. After system-
atic periodontal treatment, a stable periodontal condition
(no probing depth>4 mm, plaque index<30%, gingival
index <30%, and no occlusal trauma) was obtained from
these patients before orthodontic treatment. In the
healthy group, patients were presented with no periodon-
titis (probing depth<3 mm, no CAL). Other inclusion
criteria included: (1) aged 12—45 years; (2) non-smokers;
(3) without systematic disease; (5) not pregnant; and (6)
no antibiotics used up to three months before removal. In
total, the periodontitis group included 12 well-controlled
periodontitis patients undergoing orthodontic treatment
for 16S rRNA analysis, and 4 patients for SEM analysis.
The healthy group included 15 periodontally healthy
patients under orthodontic treatment for 16S rRNA anal-
ysis and 4 patients for SEM analysis. The “Micropower”



Zhao et al. Progress in Orthodontics (2023) 24:42

package (http://github.com/brendankelly/micropower)
was used to assess the sample size.

Self-drilling titanium orthodontic TADs (diameter,
1.5 mm; length, 7 mm or 8 mm; Zhongbang Medical
Treatment Appliance, Xi'an, China) were inserted in the
maxilla, between tooth roots of anterior or posterior
teeth, between the buccal or palatal surface. To be spe-
cific, the insertion sites were between maxillary lateral
incisor and canines, between the first premolar and sec-
ond premolar, and between the second premolar and the
first molar. All TADs were inserted by one experienced
orthodontist. No damage to the adjacent tooth roots
was observed. All patients received oral hygiene instruc-
tions to brush TADs and the surrounding tissues when
adopting oral hygiene methods. All TADs were activated
1 month after placement. In total, we observed 8 TADs
under SEM, 4 from periodontitis, and 4 from the healthy
group. Twenty-seven TADs from 27 patients, 12 from
the periodontitis group, and 15 from the healthy group
were included for 16S rRNA gene sequencing. All of the
included TADs remained stable during treatment and
were removed until attaining the desired result.

SEM analysis

Eight TADs from 8 individuals were observed under
SEM to scrutinize the biofilm attached. After removal,
the TADs were transferred to 1.5 mL nonpyrogenic
microcentrifuge tubes containing 0.5 mL 4% glutaralde-
hyde and stored at—4 °C. Before observation, the TADs
were dehydrated in increasing concentrations of ethanol
(30%, 50%, 70%, 80%, 90%, 95%, and 100%). After conduc-
tive coating, they were sent for examination under SEM
(SU8010, Hitachi, Tokyo, Japan).

DNA extraction

The TADs were placed in nonpyrogenic microcentri-
fuge tubes containing 0.5 mL normal saline solution
and stored at—20 °C refrigerator temporarily. Before
DNA extraction, the tubes were agitated in an ultra-
sound cleaner (SB-3200DTN, Scientz, Ningbo, China) for
20 min. The tubes were then centrifuged at 8000 rpm for
15 min to remove the supernatant. The precipitate was
then sent for DNA extraction.

QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany)
was used to extract genome DNA. Extraction procedures
were performed according to the kit instructions. Before
extraction, 180 pL lysozyme (Solarbio, Beijing, China)
was added to the reaction system. The system was then
incubated at 37 °C for 30 min. NanoDrop 2000 Spectro-
photometer (Thermo Fisher Scientific, Carlsbad, CA,
United States) and 1% agarose gel electrophoresis were
used to determine the purity and integrity of DNA.
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16S rRNA gene sequencing

The V3-V4 region of the bacteria 16S ribosomal RNA
genes was amplified by Polymerase chain reaction (PCR)
(95 °C for 3 min, followed by 30 cycles at 98 °C for 20 s,
58 °C for 15 s, and 72 °C for 20 s and a final extension
at 72 °C for 5 min) using barcoded primers 341F 5'-CCT
ACGGGRSGCAGCAG-3" and 806R 5'-GGACTA
CVVGGGTATCTAATC-3’. PCR reactions were per-
formed in a 30 pL mixture containing 15 pL of 2 X KAPA
Library Amplification ReadyMix, 1 pL of each primer
(10 pM), 50 ng of template DNA, and ddH2O. Negative
controls consisting of empty sterile storage tubes were
processed for DNA extraction, and amplification using
the same procedures and reagents used for the TAD sam-
ples. There was no detectable amplification in the nega-
tive controls. Amplicons were extracted from 2% agarose
gels and purified using the AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, U.S.) accord-
ing to the manufacturer’s instructions and quantified
using Qubit®2.0 (Invitrogen, U.S.). All quantified ampli-
cons were pooled to equalize concentrations for sequenc-
ing using Illumina MiSeq (Illumina, Inc., CA, USA). The
paired-end reads of 250 bp were overlapped on their 3
ends for concatenation into original longer tags by using
PANDAseq (https://github.com/neufeld/pandaseq, ver-
sion 2.9). DNA extraction, Library construction, and
sequencing were conducted at Realbio Genomics Insti-
tute (Shanghai, China).

Data processing
Raw data were deposited at Sequence Read Archive
under project No.PRJNA910988. Preprocessing of data
was performed under the guidance [24]. After demulti-
plexing, Vsearch [25] (version 2.15) was used to merge
raw paired-end sequences according to the overlap of
the paired-end reads, allowing for a maximum of five
mismatches. Barcode and primers were then removed
allowing a maximum error rate of 1% by Vsearch [25]
(version 2.15) to obtain clean reads. After dereplication,
unoise3 in USEARCH [26] was used to denoise to ampli-
con sequence variance (ASV) for representative sequence
selection. Next, Vsearch [25] (version 2.15) was utilized
to detect and exclude chimeras. The feature table was
created by using Vsearch [25] (version 2.15). RDP classi-
fier and the Human Oral Microbiome Database [27, 28]
were both employed as databases in sequence annotation.
To start the downstream analysis, random rarefication
procedures were taken for each pre-processing sequence
to mitigate the effect of varying sequencing depths.
a-diversity indices (the Chaol richness estimator, Shan-
non index) were calculated as metrics for the microbial
diversity within each sample. Bray Curtis distance and
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Unifrac distance were assessed as representations of the
overall microbiome dissimilarities or B-diversity. Prin-
cipal coordinate analysis (PCoA) was implemented to
reflect the p-diversity through R. Then, ASVs were classi-
fied into microbial taxa (phylum, class, order, family, and
genus). The phylogenetic tree was constructed on ITOL
(https://itol.embl.de/). Linear discriminant analysis Effect
Size (LEfSe) was used to identify differential taxa between
groups [29]. Phylogenetic Investigation of Communi-
ties by Reconstruction of Unobserved States (PICRUSt)
[30] (version 1.1.3) tool was adopted to predict func-
tional roles based on the Kyoto Encyclopedia of Gene
and Genomes (KEGG) pathway. We have conducted
the MaAsLin (Multivariate Analysis by Linear Models)
(http://huttenhower.sph.harvard.edu/galaxy/) to address
potential biases.

Statistical analysis

An independent sample Student’s ¢ test and nonparamet-
ric Wilcoxon’s test were used to evaluate demographic
features and clinical parameters between the two groups.
The difference between a- diversity was calculated by
analysis of variance (ANOVA). The pairwise permuta-
tional multivariate analysis of variance (PERMANOVA)
procedure tested the significance of B-diversity between
groups. This was realized by the Adonis function of
the R package vegan 2.5-6, allowing for 9999 permuta-
tions. Wilcoxon’s test was used to determine differences
between genera, species as well as KEGG functions. False
detection rate (FDR) correction was employed. Data were
plotted using the GraphPad Prism program (GraphPad
Prism 9.0).

Results

Overview of subjects and samples

In this study, we performed SEM observation on 8 sam-
ples from 8 individuals, 4 from the periodontitis group
and 4 from the healthy group. Then, we conducted 16S
rRNA gene sequencing of 27 TADs samples from 27 indi-
viduals, 12 from the periodontitis group and 15 from the
healthy group. The individuals’ demographic features and
clinical parameters are presented in Table 1 for the 16S
rRNA sequencing analysis. No detection between micro-
bial measurements and clinical metadata (age, sex, TAD
insertion days, Angle’s classification) was found in the
MaAsLin analysis.

SEM proving the existence of bacteria

To explore the microbiome on the TADs’ surface, we first
performed SEM to prove the existence of the microbiome
on TADs (Fig. 1). SEM demonstrated the existence of
microflora on the surface of observed TADs both in the
periodontitis group and in the healthy group. Rods and
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Table 1 Demographic features of patients under 16S rRNA gene
sequencing

Variable Periodontitis Healthy (n=15) P
(n=12)
Age (y) 30.33+9.36 224+7.00 0.02
Sex ratio 0.075
Male 3 0
Female 9 15
Time in oral cavity 774.83+£229.15 622.33+29925  0.159
(days)
Angle’s classification 0407
| 4 3
Il 4 9
I 4 3

coccoid bacteria were all seen in this region. Besides, tis-
sue remnants containing fibers and red blood cells were
also observed. This testified to microbiome colonization
on the surface of TADs.

Phylogenetic alterations under different periodontal
conditions

During 16S rRNA gene sequencing processing, a total
of 1,232,565 clean reads were acquired. The average
sequences for each sample were 45,650, eliciting 1591
ASVs. After rarefication, each sample contained 25,975
clean reads.

To characterize the microbiome of the individuals with
chronic periodontitis, a-diversity and p-diversity were
first evaluated as reflections of the overall structural fea-
tures and composition (Fig. 2). No statistical difference
was observed in a-diversity indices between the peri-
odontitis group and healthy group (P=0.737, P=0.972,
respectively) (Fig. 2A, B). However, PCoA based on
weighted Bray Curtis distances revealed a statistically sig-
nificant discrepancy in phylogenetic structures between
the periodontitis group and the healthy group (P<0.001)
(Fig. 2C). Different clusters were formed, indicating sepa-
ration in microbiome composition between the groups.
Similarly, PCoA based on Unifrac distances revealed a
clear separation between the groups (P<0.001) (Fig. 2D).

Identification of microbiota composition

Next, we classified ASVs into certain microbial taxa to
identify the compositional changes in individuals under
different periodontal conditions. In general, we discov-
ered 12 phyla, 25 classes, 38 orders, 62 families, and 113
genera. Phylum, such as Firmicutes, Bacteroidetes, Fuso-
bacteria, and Proteobacteria, constituted the majority of
the microbiota on the TADs (Fig. 2E). Genera including
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Fig. 1 SEM images of TADs showing microbiome colonization on its surface. A The whole picture of the TAD. B Higher magnification of new
sterilized TAD x 5.00 k. C Higher magnification of the transmucosal segment of TAD with tissues and biofilm formation x 5.00 k of the healthy group.
D Higher magnification of transmucosal segment of TAD with bacteriax 5.00 k of the periodontitis group

Veillonella, Prevotella, Fusobacterium, Streptococcus,
Leptotrichia, and Neisseria predominated (Fig. 2F).

To better characterize the differences, Wilcoxon’s test
was used. The bar plot showed the differential micro-
biome between the periodontitis group and the healthy
group (Fig. 3A). At the genus level, Fusobacterium, Por-
phyromonas,  Saccharibacteria_(TM7)_[G-1], Dialis-
ter, Parvimonas, Fretibacterium, Treponema were more
enriched in the periodontitis group (P<0.05). Veil-
lonella, Neisseria, Actinomyces, Haemophilus were more
enriched in the healthy group (P<0.05). At the species
level, we identified differential species associated with
periodontal disease. Fusobacterium nucleatum, Filifac-
tor alocis, Prevotella intermedia, Parvimonas micra, Por-
phyromonas gingivalis, Tannerella forsythia, Treponema
denticola, and Streptococcus constellatus demonstrated
significant higher relative abundance in periodontitis
group compared with healthy group (Fig. 3B).

Microbiota involvement in functional variation

To study the functional changes in TADs in individuals
with different periodontal conditions, the PICRUSt algo-
rithm was employed to predict the path of microbiota
derivation based on the KEGG database. Differences in
functional abundance between TADs in patients with
periodontitis and TADs in patients in good periodontal
health were evaluated (Fig. 4). The periodontitis group

demonstrated enriched microbial activities involved with
translation, genetic information processing, metabolism,
and cell motility on KEGG Level 2 (Fig. 4A). To be more
specific, on KEGG Level3, enriched functions in peri-
odontitis group were observed in Ribosome, Oxidative
phosphorylation, Aminoacyl tRNA biosynthesis, DNA
replication proteins, etc. (Fig. 4C). TADs on healthy peri-
odontal individuals demonstrated enriched functions in
Membrane Transport, Cellular Processes and Signaling,
Metabolism of Other Amino Acids (Fig. 4B).

Discussion
Our study characterized alterations in microbial com-
munity profiles on the TADs surface depending on the
periodontal condition. SEM analysis demonstrated the
microbiome colonization on the surface of observed
TADs both in the periodontitis group and in the healthy
group. We identified the compositional and phyloge-
netic changes in the microbiome on the surface of TADs
in relation to their periodontal condition. We also pre-
dicted the functional involvement of the microbiome on
patients with periodontitis. To the best of our knowledge,
this is pioneering research in elucidating the influence of
periodontitis history on the microbiome colonization on
the surface of TADs.

The microbiome normally colonizes on the surface of
TADs. When a TAD is inserted, a new site is created,
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which is defined as the gingival sulcus between the sur-
rounding gingiva and the TAD cervical [31]. In a previous
study utilizing SEM, Ferreira discovered bacteria coloni-
zation on the head, transmucosal surface, and body seg-
ment of TADs [8]. Similarly, in our study, the existence of
microflora was observed on the surface of TADs. Previ-
ous studies also observed the adhesion, aggregation, and

development of the microbial colonization process in
TADs using cell growth methods or fluorescence images
[9, 31]. The interactions between the microorganisms and
the host maintain the microecological balance around
the TADs [10].

Periodontitis is not a contraindication for orthodon-
tic treatment. Except for measurement of the clinical
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attachment level, probing depth, and radiographic
assessment of alveolar bone loss, early diagnosis of
periodontitis might be realized through biomarkers,
for instance, microRNAs and peptides [16, 32]. Tradi-
tional routine treatment of periodontitis includes RSP
and surgical intervention. Recently, much attention has
been drawn to immunomodulation. Drugs, stem cells,
and other therapies targeting the immune microenvi-
ronment have shown great potential [33]. It has been
confirmed that in periodontitis patients, orthodontic
treatment would not bring additional damage to the

periodontal tissue under patients’ strict plaque control
methods [34]. In a meta-analysis, Guo et al. reported
temporary increases in periodontal pathogens in ortho-
dontic patients at the placement of the orthodontic
appliance [35]. This disturbance would diminish sev-
eral months later. According to later research of Guo
et al., this phenomenon could also be observed in peri-
odontitis patients receiving orthodontic treatment [36].
However, no previous studies have focused on micro-
biological evaluations of TADs, and the potential influ-
ence on patients’ periodontal condition.



Zhao et al. Progress in Orthodontics (2023) 24:42

In our study, we have discovered periodontal pathogens
colonization on the TADs from the periodontitis group.
At the species level, we discovered an increase in Porphy-
romonas gingivalis, Tannerella forsythia, and Treponema
denticola, which were the component of the red complex
in the Socransky’s analysis, in the periodontitis group
[37]. An elevation of the orange complex components,
Fusobacterium nucleatum, Prevotella intermedia, and
Streptococcus constellatus, was also observed. We specu-
lated that these pathogens might migrate from periodon-
tal pockets to TAD surrounding tissue. The virulence
factors of these microorganisms and their production
of toxic metabolites might trigger the host inflamma-
tory response, including the release of cytokines, and
chemokines as well as the emigration of inflammatory
cells [6]. Another research has already demonstrated oral
microbiome dysbiosis contribute to the failure of TADs
[38]. The result of our study reminds orthodontists to be
fully aware of potential risks when applying TADs to per-
iodontitis patients seeking orthodontic treatments.

Characterizing microbiome function is necessary to
broaden our knowledge of how periodontal conditions
affects the microbiome on the TADs’ surface. We used
PICRUSt as a substitution method to characterize func-
tional changes, which has been implemented in other
sequencing studies [39—41]. Microbial activities involved
with translation, genetic information processing, metab-
olism, and cell motility were abundant in the biofilm on
TADs of the periodontitis group, which indicates func-
tional dysbiosis. Demonstrating the role of the key bac-
teria that encode these functions and setting up the link
between these functions and the mobility of TADs will be
crucial in future research.

Our study discussed the relationship between the peri-
odontal condition and microbiomes on the TADs sur-
face using next-generation sequencing. Meanwhile, our
study had a few limitations. The TADs samples were dif-
ficult to acquire. Each orthodontist would normally only
insert a few TADs each month, and the sample size was
relatively limited. Besides, each individual also exhibited
individual variance in the oral microbiome composition.
In addition, the age in the periodontitis group was a little
higher than the healthy group. This could be explained by
the natural progression of periodontitis often occurred
with an increase in age. We have conducted the MaAs-
Lin analysis to address the potential bias. Lastly, the
golden standard for harvesting plaque samples is through
a paper point or curette. Due to the size of the TAD, it
was not feasible to employ the golden standard, so we
employed the methods put forward by Andrucio [11].
Considering that periodontal condition affects TADs sur-
rounding the microenvironment and could potentially
influence the success of TADs, further research is needed
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to explain the mechanism of the oral microbiome and its
relations with immobility.

Conclusions

This analysis elucidated the difference in total composi-
tion and function of TADs oral microorganisms between
patients periodontally healthy and with periodontitis.
Periodontal pathogens, Fusobacterium, Porphyromonas,
Saccharibacteria_(TM7)_[G-1], Dialister, Parvimonas,
Fretibacterium, Treponema were more enriched in TADs
from patients with a history of periodontitis.
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