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A B S T R A C T

Accurate prognostic stratification of oral leukoplakia (OLK) with risk of malignant transformation
into oral squamous cell carcinoma is crucial. We developed an objective and powerful pathomics-
based model for the prediction of malignant transformation in OLK using hematoxylin and eosin
(H&E)-stained images. In total, 759 H&E-stained images from multicenter cohorts were included.
A training set (n ¼ 489), validation set (n ¼ 196), and testing set (n ¼ 74) were used for model
development. Four deep learning methods were used to train and validate the model constructed
using H&E-stained images. Pathomics features generated through deep learning combined with
machine learning algorithms were used to develop a pathomics-based model. Immunohisto-
chemical staining of Ki67, p53, and PD-L1 was used to interpret the black box of the model.
Pathomics-based models predicted the malignant transformation of OLK (validation set area under
curve [AUC], 0.899; testing set AUC, 0.813) and significantly identified high-risk and low-risk
populations. The prediction performance of malignant transformation from dysplasia grading
(validation set AUC, 0.743) was lower than that of the pathomics-based model. The expressions of
Ki67, p53, and PD-L1 were correlated with various pathomics features. The pathomics-based
model accurately predicted the malignant transformation of OLK and may be useful for the
objective and rapid assessment of the prognosis of patients with OLK.

© 2023 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.
Introduction

Oral squamous cell carcinoma (OSCC) is the most common oral
and maxillofacial malignancy, accounting for more than 90% of
oral malignancies.1 The incidence and mortality rates of oral
cancer are increasing worldwide.2 Although treatment strategies
for OSCC are under development, the 5-year survival rate of
advanced OSCC is only approximately 40%.3 Early diagnosis of
OSCC may thus help contribute to improved patient survival.

Oral potentially malignant disorders are a group of precursor
lesions of OSCC with significant malignant potential.4 Oral leu-
koplakia (OLK) is one of the most common oral potentially ma-
lignant disorders and has a malignant transformation rate of
approximately 10%.5,6 Early identification of OLK in patients at a
ology. Published by Elsevier Inc. All rights reserved.
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high risk for malignant transformation may allow for early
monitoring of OSCC in these patients. Currently, the clinical pre-
dictor of malignant transformation in OLK is the histopathologic
grading of oral epithelial dysplasia (OED) using hematoxylin and
eosin (H&E)estained sections. Moderate-to-severe dysplasia is
associated with an increased risk of development of OSCC.5-7

Although the World Health Organization has proposed 2 grading
systems to improve the assessment of OED grading,8 histopatho-
logic grading by pathologists still yields inconsistent results.9,10

Furthermore, the absence or lower grading of OED does not
indicate an absence of malignant risk. Chaturvedi et al7 reported
that 39.6% of oral cancers originated from OLK without dysplasia.
Given the low agreement and specificity of OED grading, the
identification of predictive biomarkers for malignant trans-
formation of OLK is critical.

Deep learninge and artificial intelligenceebased approaches
are being widely developed for the prediction, differential diag-
nosis, and clinical management of cancers11-17 Deep learning can
acquire the pathomics-related features of biopsies from H&E-
stained histopathology slides.18 The low agreement of grading by
pathologists may be avoided using artificial intelligenceebased
models, and the development of big data models may improve
the prediction performance.

The aim of this study was to develop a deep learning model to
predict the malignant transformation of OLK. This study included
a cohort of 759 cases of OLK with a median follow-up of 75
months. The pathomics-based model was developed with a large
number of H&E-stained histopathology images and comprehen-
sively evaluated using internal and external data sets.
Materials and Methods

Study Design and Data Collection

We developed a pathomics-based model to predict the risk of
malignant transformation of OLK using H&E-stained images from
multicenter cohorts. All OLK cases were diagnosed from biopsy and
reviewed by 2 experienced head and neck pathologists following
the criteria drafted by the World Health Organization.4,8 We
retrospectively collected 699 cases of OLK from Peking University
Hospital of Stomatology and randomly divided them into a training
set cohort (n¼ 489) and a validation set cohort (n¼ 210) with a 7:3
ratio. We also collected 74 cases of OLK as a testing set cohort,
which included 42 cases from Xiangya Stomatological Hospital of
Central South University and 32 cases from Shanxi Medical Uni-
versity Hospital of Stomatology. After screening the H&E-stained
sections of all samples and excluding sections with faded and un-
clear H&E stain, 759 H&E-stained images were included, with 489
H&E-stained images in the training set, 196 H&E-stained images in
the validation set, and 74 H&E-stained images in the test set. The
median follow-up time of the entire cohort was 75 months. By
reviewing medical records, we obtained patient information such
as age, sex, lesion site, smoking history, and alcohol consumption.
The data ofmalignant transformationwere recorded by performing
follow-up.Malignant transformationwas defined as the occurrence
of OSCC at the same or adjacent site at least 1 month after the
diagnosis of OLK. This study was approved by the Institutional
Review Board of all involved hospitals.
Immunohistochemical Staining and Evaluation

We randomly selected 94 formalin-fixed paraffin-embedded OLK
samples from the validation set cohort for immunohistochemical
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(IHC) staining. The samples were sliced into sections (3 mm thick)
and mounted on adhesive slides. IHC staining was conducted using
a fully automated IHC instrument (BOND III; Leica Biosystems
Melbourne Pty Ltd). The primary antibodieswere as follows:mouse
anti-Ki67 monoclonal antibody (1:200 dilution, MXB), mouse anti-
p53 monoclonal antibody (1:200 dilution, MXB), and rabbit
antiePD-L1 monoclonal antibody (1:200 dilution, MXB). Ki67, p53,
and PD-L1 expressions were assessed by scoring the percentage of
positive cells as follows: score 0 (0%), 1 (1%e25%), 2 (26%e50%), 3
(51%e75%), and 4 (76%e100%). IHC evaluation was performed by 2
experienced pathologists.
Image Acquisition and Preprocessing

All H&E-stained slides were scanned as whole slide imaging
(WSI) digital slides using a NanoZoomer and exported to JPG
format by NDPView2 software. Because the digitalized images
were large, the images were cut into small image tiles (512 � 512
pixels) by a nonoverlapping sampling at 20� magnification (0.5
mm/pixel). We excluded images with a ratio of bright pixels larger
than 0.8. The small tiles underwent color normalization with the
Reinhard method and were further normalized using z scores on
red, green and blue channels to obtain a standard normal distri-
bution of image intensities as inputs. Data augmentations
included random horizontal and vertical flipping.
Model Development and Pathomics Features

Our deep learning pipeline presented 2 predictions: patch-level
and WSI-level. Because of the large image size and heterogeneity,
the WSI was first divided into small patches and then the patch
likelihoodswere aggregated in an ensemble algorithm to obtain the
WSI-level prediction. During the patch-level prediction, 4 SOTA
convolutional neural networks (ResNet50, ResNet101, InceptionV3,
and Densenet121) in ImageNet classification competition were
trained to compute the patch likelihood in which the patches were
assigned with the label of the WSI. Softmax cross-entropy loss was
used to optimize the network using a mini-batch gradient descent
method. The initial parameters of themodel were transferred using
the ImageNet data to generalize the model across cohorts with a
high degree of heterogeneity. Transfer learning was conducted by
reusing the model weights in the patch-level discriminators and
then fine-tuning the weights using a small amount of labeled data.
To enhance the generalization, we carefully set the learning rate
(Supplementary Methods).

After training the deep learning model, all patches were pre-
dicted with a label and corresponding probability. The patch
likelihoods were then aggregated in a classifier to obtain the WSI-
level prediction. We developed 2 independent machine learning
methods to aggregate the patch likelihoods, the Patch Likelihood
Histogram (PALHI) pipeline and the Bag of Words (BoW) pipeline,
which were inspired by the histogram-based method and the
vocabulary-based method, respectively. In PALHI, a histogram of
the occurrence of the patch likelihood was applied to represent
the WSI. In BoW, each patch was mapped to a TF-IDF floating-
point variable, and a TF-IDF feature vector was computed to
represent the WSI. Traditional machine learning classifiers were
then further trained using these feature vectors to predict the
status of each WSI.

We then fused the potential histogram and TF-IDF features. The
final features were included in machine learning models such as
logistic regression, support Vector machines (SVM), K-nearest



Table 1
Baseline characteristics

Data sets Training set Validation set Testing set

No. 489 196 74

Age 55.09 ± 13.29 53.49 ± 12.06 50.74 ± 12.50

Sex

Female 268 (54.81%) 97 (49.49%) 23 (31.08%)

Male 221 (45.19%) 99 (50.51%) 51 (68.92%)

Site
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neighbor (KNN), random forest, Extra Trees, extreme gradient
boosting (XGBoost), light gradient boosting machine (LightGBM),
and multilayer perceptron (MLP) for risk model construction. The
best model was selected based on the validation set. During the
training of the WSI-level classifier, the hyperparameters were
determined using grid search on the training set. Grad-CAM class
localization maps were created by visualizing the gradients
flowing into the final convolutional layer of the network, just
before the fully connected layers.
Buccal 167 (34.15%) 71 (36.22%) 33 (44.59%)

Ventral of tongue 173 (35.38%) 52 (26.53%) 24 (32.43%)

Dorsum of tongue 59 (12.07%) 35 (17.86%) 6 (8.11%)

Gingiva 67 (13.70%) 31 (15.82%) 8 (10.81%)

Lip 7 (1.43%) 3 (1.53%) 2 (2.70%)

Palate 16 (3.27%) 4 (2.04%) 1 (1.35%)

Smoking history

No 328 (67.08%) 119 (60.71%) 31 (41.89%)

Yes 161 (32.92%) 77 (39.29%) 43 (58.11%)

Alcohol drinking history

No 348 (71.17%) 133 (67.86%) 45 (60.81%)

Yes 141 (28.83%) 63 (32.14%) 29 (39.19%)

Malignant transformation 72 (14.72%) 12 (6.12%) 6 (8.11%)
Statistical Analysis

We used receiver operating characteristics (ROC) curve, sensi-
tivity, specificity, positive predictive value, and negative predictive
value to measure the model performance. ROC curves were
generated by plotting the proportion of true positive cases (sensi-
tivity) against the proportion of false-positive cases (1-specificity)
on the basis of various predictive probability thresholds. A larger
area under the ROC curve (AUC) indicated a better prediction per-
formance. Experiments of model development were implemented
with Python (version 3.7.12). The deep learning model used to
extract pathology features was trained using PyTorch package
(version 1.8.0). Some preprocessing, such as background removal
and patch normalization, was conducted with OnekeyAI platform.
All machine learning methods were performed using scikit-learn
(version 1.0.2). The groups with high risk and low risk of malig-
nant transformation predicted by the pathomics-basedmodel were
classified by the “survival” and “survminer” R packages. P < .05
indicated statistical significance. Figure visualizations were per-
formed by GraphPad Prism (version 8.3.0), Python, and R software.
Results

Model Development and Evaluation

The 759 H&Estained images from multiple academic medical
centers were divided into the training set (n ¼ 489 cases), vali-
dation set (n ¼ 196 cases), and testing set (n ¼ 74 cases). The
baseline characteristics of the 3 data sets are presented in Table 1.
A flowchart depicting the procedures for model development is
shown in Figure 1.

We tried many different models, including resnet50, incep-
tion_v3, resnet101, and densenet121, and compared the algorithms
using the same data sets. As shown in Supplementary Table S1, the
resnet50model obtained the best AUC (0.930 [95% CI, 0.929e0.931]
in the training set and 0.656 [95% CI, 0.652e0.660] in the validation
set). Overall, 106 pathomics features were generated by fusing the
prediction and probably histogram (prob-0.5 to prob-1.0, pred-0,
and pred-1) and TF-IDF (prob05 to prob10, pred0, and pred1) fea-
tures together (Supplementary Table S2). Using the features, we
then tested common machine learning algorithm models, such as
logistic regression, SVM, KNN, random forest, Extra Trees, XGBoost,
LightGBM, andMLP. The results are shown in Table 2 and Figure 2A,
B. The LightGBM model showed the best AUC score in the max
percentile with 0.899 (95% CI, 0.844e0.955) in the validation set
and 0.813 (95% CI, 0.727e0.899) in the testing set. Thus, resnet50
combined with LightGBM was used to develop the pathomics-
based model to predict the malignant transformation of OLK.

The pathomics-based model was then used to predict the risk
of malignant transformation of OLK in the validation set cohort
and testing set cohort. The pathomics-based model was used to
3

assess the probability of malignant transformation for individuals
in the validation and test sets. By Kaplan-Meier curve analysis, the
2 sets were then each divided into 2 groups: high-risk population
and low-risk population. As shown in Figure 3A, B, the risk of
malignant transformation in the high-risk populations predicted
by the pathomics-based model was significantly higher than that
in low-risk populations both in the validation set (hazard ratio,
377.5; 95% CI, 19.0-7497.0) and testing set (hazard ratio, 9.2; 95%
CI, 1.8-46.0). The malignant transformation rate of the low-risk
population in the validation set was 4.81%, whereas the rate in
the high-risk population was 33.33%. The malignant trans-
formation rate of the low-risk population in the testing set was 0%,
whereas the rate in the high-risk population was 18.18%.
The Model Provided Better Performance than Oral Epithelial
Dysplasia Grading

OED grading is currently the only clinical predictor of malig-
nant transformation in OLK.9 We next examined OED grading
results by pathologists and compared the results with the model.
Two head and neck pathologists (10 and 20 years of experience,
respectively) conducted OED grading of H&E-stained sections of
196 cases in the validation set, and a third head and neck
pathologist (30 years of experience) consulted in cases of
disagreement. We evaluated the performance of OED grading in
predicting the malignant transformation of OLK, and the AUC was
0.743 (95% CI, 0.623e0.862). These results indicate that the
pathomics-based model showed better performance in predicting
malignant transformation compared with OED grading (Fig. 2A).
Pathomics Features Associated with Immunohistochemical
Staining of Molecules

Deep learning and artificial intelligence algorithms have been
described as a black box and lacking interpretability. To explore
the interpretation of the black box of the pathomics-based model,
we analyzed the relationship between pathomics features gener-
ated by the deep learning models and the expression of several



Figure 1.
Flowchart of the development of the pathomics-based model using hematoxylin and eosin staining images through deep learning and machine learning algorithms. BoW, Bag of
Words; KNN, K-nearest neighbor; LightGBM, light gradient boosting machine; LR, logistic regression; MLP, multilayer perceptron; MT, malignant transformation; PALHI, Patch
Likelihood Histogram; SVM, support vector machines; WSI, whole slide imaging; XGBoost, extreme gradient boosting.
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prognostic-related molecules. Previous studies reported that the
expressions of Ki67, p53, and PD-L1 were associated with the
malignant transformation of OLK.19-21 We next performed
immunohistochemical staining and evaluated the expressions of
Ki67, p53, and PD-L1 in 94 OLK cases from the validation set.
Spearman correlation analysis was used to explore pathology
deep learning features related to the expression of these 3 mole-
cules (Supplementary Table S3, Fig. 4). Among all deep learning
features, 94 features were correlated with the expression of Ki67
Table 2
The performance of the machine learning models

Models Data sets AUC (95% CI)

LR Training set 0.918 (0.884e0.953)

Validation set 0.906 (0.838e0.973)

Testing set 0.685 (0.555e0.816)

SVM Training set 0.951 (0.924e0.979)

Validation set 0.533 (0.293e0.773)

Testing set 0.558 (0.429e0.686)

KNN Training set 0.955 (0.938e0.972)

Validation set 0.819 (0.685e0.954)

Testing set 0.626 (0.464e0.789)

RandomForest Training set 1.000 (0.999e1.000)

Validation set 0.788 (0.654e0.922)

Testing set 0.839 (0.757e0.922)

ExtraTrees Training set 1.000 (1.000e1.000)

Validation set 0.787 (0.642e0.932)

Testing set 0.651 (0.534e0.767)

XGBoost Training set 0.994 (0.983e1.000)

Validation set 0.819 (0.687e0.951)

Testing set 0.826 (0.742e0.910)

LightGBM Training set 0.971 (0.957e0.985)

Validation set 0.899 (0.844e0.955)

Testing set 0.813 (0.727e0.899)

MLP Training set 0.922 (0.892e0.953)

Validation set 0.899 (0.802e0.995)

Testing set 0.594 (0.391e0.798)

AUC, area under the receiver operating characteristics curve; KNN, K-nearest neighbor;
perceptron; NPV, negative predictive value; PPV, positive predictive value; SVM, suppo
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(P < .05). “prob-0.57,” “prob-0.63,” “prob052,” “prob057,” and
“prob063” were the pathomics features most associated with
expression of Ki67. Only 10 pathomics features were significantly
associated with the expression of p53 (P < .05): “prob-0.86,”
“prob-0.91,” “prob-1.0,” “prob091,” “prob095,” “prob10,” “pred-0,”
“pred-1,” “pred0,” and “pred1.” In total, 71 features were related to
the expression of PD-L1 (P < .05), and “prob-0.79,” “prob-0.8,”
“prob058,” “prob079,” and “prob099” were the most associated
pathomics features. These results indicate that the expression of
Sensitivity Specificity PPV NPV

0.542 0.978 0.813 0.925

0.833 0.897 0.345 0.988

0.833 0.612 0.156 0.976

0.556 0.990 0.909 0.928

0.333 0.984 0.500 0.957

1.000 0.388 0.125 1.000

0.556 0.976 0.800 0.927

0.750 0.884 0.273 0.982

0.833 0.563 0.135 0.973

1.000 0.998 0.986 1.000

0.833 0.683 0.145 0.984

1.000 0.900 0.207 1.000

1.000 1.000 1.000 1.000

0.750 0.761 0.170 0.979

1.000 0.403 0.128 1.000

0.931 1.000 1.000 0.988

0.833 0.761 0.185 0.986

1.000 0.687 0.214 1.000

0.514 0.995 0.949 0.922

1.000 0.739 0.200 1.000

1.000 0.672 0.207 1.000

0.514 0.986 0.860 0.922

0.917 0.870 0.314 0.994

0.833 0.537 0.135 0.973

LightGBM, light gradient boosting machine; LR, logistic regression; MLP, multilayer
rt vector machines; XGBoost, extreme gradient boosting.



Figure 2.
The performances of each machine learning model in the (A) validation set and (B) testing set. AUC, area under the receiver operating characteristics curve; KNN, K-nearest
neighbor; LightGBM, light gradient boosting machine; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machines; XGBoost, extreme gradient boosting.
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multiple cancer riskeassociated molecules were significantly
associated with deep learning model features, indicating the
interpretability of the pathomics-based model.
Discussion

As described in the recent review and meta-analysis of OLK,
there is currently no satisfactory single stratification method for
prognosis prediction.22,23 OED grading is currently the only clin-
ical predictor.23 However, the low agreement and specificity of
OED grading indicates its limited efficacy as a risk-predictive
marker for invasive OSCC.10,24 Therefore, an efficient and repeat-
able method for malignant transformation prediction to stratify
patients for treatment and management is required.

Deep learning based on H&E images can identify the patho-
mics features of patients, and artificial intelligence algorithms
used in these specific features can distinguish benign and malig-
nant lesions, identify molecular typing, and develop prognostic
models.12,14-17,25,26 The implementation of artificial intelligence
has provided the opportunity to improve precision medicine
management and monitoring of OLK. In this study, we showed
that a pathomics-based prediction model that was developed
using H&E images achieved high predictive performance in a
Figure 3.
The pathomics-based model was used to predict the risk of malignant transformation of
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training set, validation set, and test set derived from real-world
data. The predictive performance was better than the previous
prediction effect using the deep learning model of digital
photos.27 This study also used the pathomics features generated
by 2 independent machine learning methods, the PALHI pipeline
and the BoW pipeline, which greatly improved the prediction
efficacy of the WSI-level of the deep learning model. Multiple
deep learning andmachine learning training allowed the selection
and construction of the optimal pathomics model. Moreover, this
pathomics-based model overcame the subjectivity of traditional
OED grading and showed better performance compared with OED
grading by pathologists. The model was developed with a large
number of H&E images, and all patients were diagnosed by
pathologic examination of H&E staining samples. The pathomics-
based model may be helpful for the identification of malignant
risk and monitoring of patients over the long-term; parameters
can be adjusted on the basis of conditions. This model may be
particularly advantageous in regions where pathologists are
scarce. Additionally, the model may be useful to assist with the
clinical management and monitoring of OLK cases.

The development and application of artificial intelligence algo-
rithms is a focus of precision medicine. However, the black box
issue of artificial intelligence should be considered. To explain the
black box of this pathomics model, we performed
oral leukoplakia in the (A) validation set cohort and (B) testing set cohort.



Figure 4.
Pathomics features associated with the expression of Ki67, p53, and PD-L1.
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immunohistochemical staining of 3 molecules that are involved in
epithelial dysplasia and malignant transformation of OLK to assess
the correlation between the expression of these molecules and
pathomics features.19-21 The expression of Ki67, p53, and PD-L1
showed significant correlations with pathomics features. This
suggested that our model does not occur in a vacuum. The weakly
supervised deep learning methods based on H&E staining images
might map the expression of a variety of molecules and microen-
vironment alterations involved in the malignant transformation of
OLK.13,14,17,18,25 The increased expression of oncogenes and changes
in the immune microenvironment are factors that influence the
development of OSCC.28-30 Although the pathomics features of the
model have not been fully analyzed, WSI scanning might help
artificial intelligence to conduct systematic analysis and thus ach-
ieve good predictive performance.

This study has several limitations. First, this was a retrospective
study, and the predictive performance of this pathomics-based
model needs to be further investigated in prospective clinical tri-
als. Second, the use of larger external cohorts might help the
application of the model to patients in different regions.

In conclusion, the pathomics-based model developed in this
study may represent an automatic prediction tool for malignant
transformation of OLK, with an improved prediction efficiency and
performance compared with conventional OED grading. The
model will provide accessory opinions that may contribute to
decision making in routine clinical management, especially in
remote areas where medical resources are scarce. Moreover, the
demonstrated high performance of this deep learning model in
the internal validation set and external test set in this study
warrants further studies in prospective clinical trials.
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