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Role of dendritic cells in MYD88-mediated immune
recognition and osteoinduction initiated by the implantation of
biomaterials
Zifan Zhao1, Qin Zhao 2, Hu Chen1, Fanfan Chen1, Feifei Wang1, Hua Tang3, Haibin Xia2, Yongsheng Zhou 1✉ and Yuchun Sun1✉

Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone
defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of
osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In
our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As
the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in
osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces
necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone
substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic
cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit
mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after
bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and
provides guidance for the development of clinical surgical methods.

International Journal of Oral Science           (2023) 15:31 ; https://doi.org/10.1038/s41368-023-00234-3

INTRODUCTION
Bone substitute material implantation has become an important
treatment strategy for the repair of oral and maxillofacial bone
defects. The success of this technique is dependent on the
induction of osteogenesis and optimal regulation of the local
immune microenvironment.1–4 Traditionally, inflammatory reac-
tions and immune cells have been considered as adverse factors
affecting the biological effects of implanted materials. Therefore,
one of the most popular research topics in this field is the
development and application of biomaterials that minimize the
immune response and the resulting inflammatory effect in the
local microenvironment.5–9 However, according to a recently
emerged view in the field of osteoimmunology, the crosstalk
between implantable bone substitute materials and the immune
system plays an important positive role in osteogenesis.10,11 That
is, the immune balance maintained by immune cells determines
the final fate of biomaterials in the complex in vivo environment.
Excessive immune response and insufficient immune response
both may lead to failure of osteoinduction.12–16 As a widely used
implantable bone substitute material, Biphasic calcium phosphate
(BCP) has been proven to have osteoinductive effect by many
studies.17,18 Our previous studies showed that in insufficient

inflammatory environment, such as minimally invasive surgery
implantation or T cell defects, will lead to failure of osteoinduc-
tion.12 This result shows that appropriate inflammatory response,
including adaptive immune response, is essential to the osteoin-
duction of BCP. However, as a non-antigenic material, how BCP
activates adaptive immunity is still unclear.
The adaptive immune response is considered to be activated by

the antigen recognition function of DCs.19,20 The function of
antigen recognition by DCs in the case of tumors or infection is
obvious, but it is unclear in the case of BCP materials that do not
have antigens.21,22 As a result, the mechanism through which
implantable biomaterials are recognized by the immune system
and lead to activation of the adaptive immune response remains
unclear. In particular, the mechanism by which DCs recognize
biomaterials and initiate osteogenesis is still in the preliminary
research stage.20,23,24

DCs are capable of recognizing intracellular proteins released by
necrotic cells through damage-associated molecular patterns
(DAMPs).25,26 One of these proteins is HMGB1, which is widely
distributed in the liver, brain, lungs, heart, spleen, kidneys, and
lymphoid tissue.27 HMGB1 is released in response to necrosis
caused by tissue injury that can be recognized by TLR4 on DCs

Received: 16 February 2023 Revised: 21 May 2023 Accepted: 26 June 2023

1Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research
Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research
Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China; 2The State Key Laboratory
Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University,
Wuhan, China and 3Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical
Sciences, Jinan, China
Correspondence: Yongsheng Zhou (kqzhouysh@hsc.pku.edu.cn) or Yuchun Sun (kqsyc@bjmu.edu.cn)
These authors contributed equally: Zifan Zhao, Qin Zhao

www.nature.com/ijosInternational Journal of Oral Science

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-023-00234-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-023-00234-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-023-00234-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41368-023-00234-3&domain=pdf
http://orcid.org/0000-0003-4223-9522
http://orcid.org/0000-0003-4223-9522
http://orcid.org/0000-0003-4223-9522
http://orcid.org/0000-0003-4223-9522
http://orcid.org/0000-0003-4223-9522
http://orcid.org/0000-0002-4332-0878
http://orcid.org/0000-0002-4332-0878
http://orcid.org/0000-0002-4332-0878
http://orcid.org/0000-0002-4332-0878
http://orcid.org/0000-0002-4332-0878
mailto:kqzhouysh@hsc.pku.edu.cn
mailto:kqsyc@bjmu.edu.cn
www.nature.com/ijos


and activate the MYD88 signaling pathway.28–31 However, in
trauma tissue, HMGB1 is cleared in a short time, and as a result, it
is unable to activate the immune response for a long time.28 Based
on these findings, in the current study, we hypothesize that
HMGB1 is adsorbed onto biomaterials, where it is retained and
amplifies the danger signal enough to activate recognition by DCs.
This may represent an essential link in the process of osteoinduc-
tion. Thus, we focus on the positive regulation of the immune
response in the process of osteoinduction and explore the
complete immune-regeneration process that occurs after the
implantation of biomaterials. In addition, this study reveals the key
roles of DCs in the process of osteoinduction mediated by bone
substitute materials, and points out a potential new direction for
the development of biomaterials.

RESULTS
Role of DCs in the osteoinduction effect of BCP
To confirm the role of DC in the osteoinduction of BCP, we
constructed BCP muscle implantation model in DC-deficient mice.
On the day before implantation, CD11c-DTR mice in the
experimental group were administered DT, and the control group
of CD11c-DTR mice were administered PBS. Gastrocnemius tissue

samples were harvested for histological staining at 28 days after
implantation (Fig. 1a). H&E and Masson’s staining showed that
there was significant new bone formation (yellow area) in the
CD11c-DTR+ PBS group 4 weeks after BCP implantation, while no
new bone formation was detected in the CD11c-DTR+ DT group
(Fig. 1b, c). IHC staining revealed significantly lower expression of
the osteogenesis marker COL1A1 in the CD11c-DTR+ DT group
than in the CD11c-DTR+ PBS group (P= 0.000 14) (Fig. 1d, e).
These results indicate that the deletion of DCs directly hinders the
osteoinduction effect of BCP.

Peak in the number of DCs at 4 days after BCP implantation
We used IF staining and flow cytometry to explore the interactions
between DCs and BCP over time, that is, within 1–14 days after the
implantation of BCP in WT mice. Immunofluorescence staining
showed that DCs were present in the tissues around BCP in the
BCP-treated mice (Fig. S2a), but very few DCs were observed in the
sham-operated tissues without BCP implantation (Fig. S2b).
Further, flow cytometry was performed for quantitative evaluation
of DCs, and the results showed that the number of DCs reached a
peak at 4 days (Fig. S2c, d). Therefore, further evaluations of the
mechanism via which BCP activates DCs were performed at the
4-day time point after implantation.
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Fig. 1 Effect of DC depletion on the osteoinduction ability of BCP. a Schematic diagram of a transgenic mouse model. b, c H&E and Masson’s
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Trauma-related BCP surface adsorbates are the key to activate DC
To confirm whether BCP-activated DC is related to implantation
surgery trauma, we subjected the BCP granules to various
treatments as follows. First, BCP granules soaked in PBS for 4 days
were used to simulate the changes caused by degradation. In the
next two treatments, trauma-related factors were evaluated by
mini-wound implantation (MW-BCP) or large-wound implantation
(LW-BCP) of BCP granules for 4 days (Fig. 2a, b). First, SEM was
used to detect the micromorphology of the above groups of BCP
granules. The observations indicated that the micro-porosity of
the BCP surface in the implantation groups (Fig. 2c) was not
significantly different from that of the PBS-treated BCP (Fig. S1b).
Surprisingly, the findings indicated that the granules in the LW-
BCP and MW-BCP groups had an “adsorption substance” on their
surface, and the amount of the adsorption substance was
significantly associated with the severity of implantation trauma
(Fig. 2d, e).
To further explore the effect of the adsorption substance, we

stimulated DC2.4 cells for 24 h with an eluent of PBS-treated BCP,
MW-BCP, and LW-BCP granules to detect DC activation. The
immunofluorescence (Fig. 3a) and flow cytometry (Fig. 3b, c)
results indicated that, compared with the PBS-treated BCP group,
expression of the DC activation markers CD80, CD83, and CD86
was significantly upregulated under LW-BCP stimulation, but not
under MW-BCP stimulation. This result confirmed that the ability
of BCP granules to activate DCs is clearly related to the severity of
the implantation trauma, which also seems to be associated with
the amount of adsorption substance present on the surface of the
material.

Role of the danger signal protein HMGB1 produced by
implantation trauma in triggering immune recognition
In order to identify which danger signal proteins, play a role in DC
activation in BCP-implanted muscle, we prepared eluates of LW-
BCP and MW-BCP and detected the concentrations of various
danger signal proteins by ELISA. Significant differences were

detected in the concentrations of HMGB1 and HSP60 between the
LW-BCP and MW-BCP groups, but not there were no significant
differences in ATP or UA (Fig. 4a). Further, the HSP60 concentration
was significantly lower than the HMGB1 concentration (Fig. 4b).
These results suggest that HMGB1 is probably the most critical
molecule for immune activation by implantation biomaterials. We
confirmed this by immunohistochemical staining for HMGB1 and
found that HMGB1 was indeed present in the adsorption
substance on the surface of BCP, but it was not detected in the
MW-BCP group (Fig. 4c). Furthermore, DCs were stimulated with
BCP or BCP+HMGB1 (5 µg·mL−1) for 24 h. The flow cytometry
results confirmed that BCP soaked in HMGB1 resulted in
significantly greater activation of DCs (P < 0.000 1) (Fig. 4d, e).
In the sham-operated model, HMGB1 could not be detected by

immunohistochemistry; this is probably because it was eliminated
rapidly in the extracellular matrix (Fig. S3). The sham operation
involved incision without implantation of BCP (Fig. S2b), and the
lack of recognition of DCs can be regarded as a self-protection
mechanism.

Role of the TLR4/MYD88/NF-κB axis in the recognition of
biomaterials by DCs
Protein-protein interaction analysis in the present study indicated
that HMGB1 mainly activates the immune recognition process
through the TLR4-MYD88 signaling pathway (Fig. 5a). Therefore,
we tried to determine whether the TLR4/MYD88/NF-κB signaling
axis plays an equally important role in recognition of biomaterials
by DCs. To this end, we used PBS-treated BCP, LW-BCP, and MW-
BCP eluents to induce DC2.4 cells and observe the activation of
signaling pathways. Lipopolysaccharide was used as a positive
control for activation of the TLR4/MYD88/NF-κB signaling path-
way. Western blot analysis showed that the TLR4/MYD88/NF-κB
signaling axis was significantly upregulated in cells treated with
the LW-BCP eluent (Fig. 5b). The results of immunofluorescence
analysis were similar, as the expression of TLR4 and transmem-
brane protein MYD88 and nuclear NF-κB-p65 expression were
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Fig. 2 Association of the adsorption substance on the surface of implanted BCP with the severity of implantation trauma. a, b Procedure for
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significantly upregulated (Fig. 5c, d). These results suggest that
HMGB1 is adsorbed onto biomaterial surfaces, where it activates
DCs through the TLR4/MYD88/NF-κB signaling pathway.

Activated DCs promote MSCs recruitment rather than osteogenic
differentiation
We treated DCs with BCP and LW-BCP eluents, then co-cultured
treated DCs with primary BMSCs. Transwell migration assays
showed that BMSC recruitment was significantly higher in the LW-
BCP group than in the BCP group (Fig. 6a, b), and the scratch test
revealed similar results (Fig. 6c, d).
Further, we treated DCs with PDTC, an inhibitor of the NF-κB

signaling pathway, to block DC activation in the LW-BCP group.
The results showed that blocking of the NF-κB signaling pathway
led to a significant decrease in the ability of activated DCs to
recruit BMSCs (Fig. 6a–d). Under the same conditions, we also
induced the mineralization of BMSCs (by adding the culture
supernatant of different groups of DCs to a BMSC mineralization
culture system). After 14 days of mineralization induction, staining
for ALP activity was used to detect the degree of mineralization.
The results showed that there was no significant difference in the

degree of mineralization of BMSCs between the groups (Fig. S4a).
Western blots of the mineralization of related proteins also
revealed similar results, that activated DCs did not significantly
promote the expression of mineralization-related proteins in
BMSCs (Fig. S4b). The above experimental results indicate that
activated DCs participate in the process of bone regeneration by
promoting the recruitment of MSCs, rather than by directly
inducing the osteogenic differentiation of MSCs (Fig. 6e).

Role of MYD88-mediated immune recognition in the
osteoinduction ability of BCP
Finally, MYD88-KO mice were used to verify the importance of the
DC-mediated immune recognition signaling pathway in the
process of osteogenesis. H&E and Masson staining showed that
new bone formation was not observed in MYD88-KO mice at
4 weeks after BCP implantation (Figs. 7a, b and 8). We used IHC
staining of COL1A1, CD105, and CD90 to observe the recruitment
of MSCs in the MYD88-KO mice. COL1A1 is a marker of
osteogenically differentiated MSCs, and CD105 and CD90 are
MSC markers. The results confirmed that the number of overall
MSCs or osteogenically differentiated MSCs around BCP in the
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MYD88-KO mice was significantly lesser than that in WT mice (Fig.
7c–f). These results confirm that MYD88-mediated DC immune
recognition is necessary for BCP osteoinduction.

DISCUSSION
The interaction between the immune system and tissue regenera-
tion process has been attracting a lot of attention, and optimal
immune regulation has become the main focus in the develop-
ment of bone substitute materials. BCP has been widely proven to
have an osteoinductive ability to form an ossification structure in
muscle, but any factor unfavorable to ossification in immune
response may lead to osteoinduction failure.32,33

In addition to the fact that innate immune cells such as
macrophages have been confirmed to participate in the process of
osteoinduction.34 In recent years, the role of DC in tissue
engineering has also received increasing attention.35,36 Previous
studies have confirmed that dendritic cells, as new participants in
bone immunology, interact with biomaterials to promote their
biological effects.35 More accurate evidence is that studies have
found that dendritic cells can promote tissue regeneration by
mediating the recruitment of mesenchymal stem cells through
extracellular vesicles.36 In order to explore the role of DCs in the
osteoinduction process of BCP, we chose DC-deficient CD11c-DTR
mice, as they are widely used for implantation studies.37–39 CD11c
is a marker of mature DCs, and it is expressed by pDCs and cDCs,
among other DC subsets.40 Research has found that administering
DT in CD11c-DTR mice can eliminate mature DCs. Compared to
the congenital absence of DC, this method has a milder and even
negligible impact on the development of other parts of the
body.41,42 We have successfully observed that BCP in DC-deficient

mice has no osteoinductive effect. This confirms that DCs were
essential for BCP osteoinduction. As one of the basic coordinators
of the immune response, DCs often mature and aggregate in the
focus area in the middle and early stages after a stress response
such as infection and injury.43,44 Similarly, using flow cytometry
and immunofluorescence, we observed that the DCs around BCP
reached a peak 4 days after implantation, at which time BCP has
the ability to activate DCs. Therefore, BCP was taken out on the
4th day after implantation for in vitro experiment.
Current research on materials that activate the immune system

mainly focuses on their macroscopic properties (e.g., roughness
and hydrophilicity)45,46 and surface microstructure.34 However, the
findings of in vivo and in vitro experiments differ even for the
same materials. For example, in our previous study, we found that
BCP could not activate DCs under in vitro conditions,8 but it could
recruit and activate DCs under in vivo conditions (that is, when
implanted). This could mean that the recruitment and activation of
DCs by BCP after implantation is dependent on the in vivo
environment. That is, the in vivo environment may affect the
surface morphology of biomaterials, including their surface
porosity47–49 or cause changes in the physical arrangement of
molecular building blocks.50 Further, the initial reaction caused by
the implantation wound may also endow the material with unique
biological properties.51 To this end, PBS immersion was used to
simulate the degradation process of BCP, and large or mini-wound
implantation were used to change the initial reaction of the
implantation wound.
The results of this study showed that BCP implanted in large

wounds can activate DCs.
Impaired clearance of injury or apoptotic cells leads to the

pathological accumulation of necrosis and the release of “danger
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signals” that are recognized by DC surface receptors and
subsequently induce an inflammatory response that initiates
tissue repair.26,52,53 At present, HMGB1, ATP, UA, and HSP are the
main trauma-related danger signal proteins that can be recog-
nized by the DC surface receptors TLR4,54,55 DNGR-1,26 and TLR3/
7/8.56,57 These results corroborate previous results which demon-
strate that HMGB1 played a role in BCP-induced activation of
DCs.58 As an endogenous autoantigen released by cells, HMGB1 is
a danger signal that can be recognized by DAMPs.59 During the
inflammatory reaction in the early stages of injury, there are
abundant ROS in the extracellular matrix, and they lead to the
formation of a disability bond of HMGB1 that activates TLR2 and
TLR4 and causes the release of pro-inflammatory chemokines and
cytokines that subsequently activate innate and adaptive immu-
nity.60 The results of this study showed that HMGB1 adsorbed
more on the surface of BCP than other DAMPs and was more
related to implantation trauma.
The next question we sought to answer was whether the

activation of DCs by danger signal proteins, such as HMGB1, is
dependent on the presence of biomaterials. In other words, we
wanted to clarify the role of biomaterials in this process. Another

important question was whether the activation of DCs by danger
signal proteins was sufficient and persistent.61 In Supplementary
Figs. 3, 2b, no extracellular HMGB1 and activated DC were
detected. As a scaffold material, BCP provides HMGB1 with
medium and space for adsorption, which is more difficult to be
eliminated than in the extracellular matrix. These findings indicate
that the presence of BCP is essential for the recognition of HMGB1
by DCs. As BCP has good adsorption ability on account of its
porous structure, this characteristic is probably useful for the
aggregation of HMGB1 and other danger signal proteins that
eventually lead to a series of inflammatory and regeneration
reactions.
This study found that TLR4/MYD88/NF-κB signaling axis is the

main signal pathway for DCs to recognize HMGB1. Similar to the
results of this study, several receptors of DCs related to DAMPs
have been identified, such as TLR4, which mainly acts as a
receptor of HMGB1, HMGN-1, HSP, and other self-molecules. The
TLR4/MYD88/NF-κB signaling axis has been proven to be of great
significance in self-tumor cell clearance and autoimmune dis-
eases.62,63 PDTC were selected as the NF-κB inhibitor, which can
inhibit the phosphorylation of IκB, and prevent the translocation
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of NF-κB into the nucleus.64 MYD88 is the canonical adapter for
inflammatory signaling pathways that is present downstream of
the TLR and IL-1 receptor families, and it is the central node of the
inflammatory pathway.65 Therefore, we used MYD88-KO mice for
BCP implant experiments, as they are widely used for such
studies.66–68

At last, we explored the mechanism by which DCs participate in
the regulation of osteogenic induction after they are activated by
biomaterials. Previous studies have reported that DCs activated
the adaptive immune response dominated by activated T cells
after antigen activation and presentation, and can participate in
the recruitment of MSCs.12,69 However, we need to determine
whether the promotion of osteogenesis by DC activation is
dependent on the adaptive immune response. It is known that
immune cells play a dual role in osteogenesis by regulating the
osteogenic differentiation of MSCs70 and the recruitment of MSCs
in the bone regeneration area.71 The results of this study show
that activated DCs contribute to the recruitment of MSCs, but have

no obvious effect on the osteogenic differentiation of MSCs.
Similar to our experimental results, it has been reported that DCs
can release chemokines to recruit MSCs, and that DCs can also
mediate the recruitment of MSCs by releasing outer vesicles under
in vitro conditions.36,72 Up to now, there have been very few
studies on the regulation of the osteogenic differentiation of MSCs
by DCs, so these findings are valuable. It is worth noting that
recent studies have shown that the complexes formed by
implanting biomaterials into the body that can activate DC
immune recognition are called biomaterial-related molecular
patterns (BAMPs), similar to DAMPs. The research results
presented in this study provide evidence for BAMPs, but their
structure needs further exploration in future research.73,74

In conclusion, after BCP implantation, danger signal proteins
such as HMGB1 aggregate and are adsorbed onto the surface of
BCP, are recognized by the TLR4/MYD88/NF-κB signaling axis of
DCs, and recruit MSCs into the microenvironment around
materials to initiate and promote the process of osteoinduction
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(Fig. 8). The findings of this study shed light on the mechanism by
which non-antigen biomaterials activate the body’s natural and
adaptive immunity, as well as complement and improve the
immune and regeneration process. This study emphasizes that
DCs were indispensable for the osteoinduction process of BCP.
This discovery provides a new idea for the research, development,
and application of bone substitution materials.

METHODS AND MATERIALS
Preparation and characterization of BCP
BCP granules were prepared by wet chemical precipitation
according to a previously described method.12,75,76 The BCP
granules were prepared at a HA/β-TCP ratio of 60/40, with a
diameter of about 0.6 mm. The porosity and specific surface area
of all granules are uniform.
X-ray diffraction (XRD) and scanning electron microscopy (SEM)

were respectively used to analyze the elemental composition and
surface morphology of BCP granules (Supplementary Fig. 1).

Animals and ethical approval
BCP implantation were performed in 8-week-old female C57BL/6
wild type (WT) or transgenic mice. CD11c-DTR mice and MYD88-
KO mice were obtained from Jackson Laboratory. Details are as
follows. CD11c-DTR: https://www.jax.org/strain/004509, MYD88-
KO: https://www.jax.org/strain/009088.
The DC-knockout group and control group mice were injected

with diphtheria toxin (DT, 100 ng/mice, Sigma, USA) and isopyknic
phosphate-buffered saline (PBS), respectively, 1 day before BCP
implantation (Fig. 1a).
All the mice were treated according to the ethical guidelines of

the Laboratory Animal Welfare Ethics Branch of the Biomedical
Ethics Committee of Peking University (approval number
LA2022320).

Implantation of BCP in the gastrocnemius muscle
Briefly, for large-wound implantation (LW), an 8-mm incision was
made through the skin and muscle, 2.5 mg BCP granules were
implanted into the muscle incision. For mini-wound implantation
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(MW), the muscles were directly separated with micro tweezers,
and 2.5 mg BCP granules were implanted into a 2-mm gap to
model implantation. The implantation and harvest process are
shown in Fig. 2a, b.

Histological staining
After harvest the implant with surrounding gastrocnemius tissue,
the samples were immersed for 3 weeks in Ethylene Diamine
Tetraacetic Acid (EDTA) decalcifying solution that was replaced
every two days for decalcification. The formula of EDTA
decalcifying solution is as follows: EDTA-2Na: 200 g, NaH2PO4-
2H2O: 25.28 g, Na2HPO4-12H2O: 13.6 g, NaCl: 18 g, NaOH: 25.5 g,
ddH2O: 2 000mL. The samples were then dehydrated with
gradient ethanol, and paraffin sections were prepared. The
sections were subjected to hematoxylin and eosin (H&E), Masson,
immunohistochemical (IHC), and immunofluorescence (IF) stain-
ing. For IHC and IF staining, sections were treated with primary
antibodies against CD11c, COL1A1, HMGB1, CD90, and CD105
diluted to 1:200 (Abclonal, China).

Cell culture
Mouse primary bone mesenchymal stem cells (BMSCs) and DC2.4
cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM;
Hyclone, USA), containing 10% fetal bovine serum (FBS; Hyclone,
USA) and 100 U·mL−1 Pen&Strep (Gibco, USA) at 37 °C under
humid conditions in a 5% CO2 atmosphere. Pyrrolidine dithio-
carbamate (PDTC,10 μmol·L−1, Selleck, USA) was used to block the
NF-κB signaling pathway.

Transwell migration assays
Mouse BMSCs were cultured under starvation for 12 h in 2% FBS
DMEM, seeded in 24-transwell chambers with 5 000 cells per
chamber, and co-cultured with three groups (BCP, LW-BCP, and
LW+ PDTC) of DC2.4 cells for 24 h. The cells were then stained
with crystal violet (Beyotime, China).

Scratch test
DC2.4 supernatants from the three groups were added to the
starvation culture (described in 2.5.2) of mouse BMSCs for 24 h,
and microscopic photographs were obtained.

Osteogenic induction and alkaline phosphatase staining
BMSCs were cultured with supernatants from the three groups
(BCP, LW-BCP, and LW+ PDTC) of DCs in an osteogenesis-
inducing medium, which contained 10 nmol·L−1 dexametha-
sone, 10 mmol·L−1 β-glycerophosphate, and 50 μg·mL−1

L-ascorbic acid, and was renewed every two days. Alkaline
phosphatase (ALP) staining was performed according to the

protocol described by the manufacturer of the ALP staining kit
(Beyotime, China).

Preparation of BCP eluent
BCP granules (0.5 g) from each group (BCP, MW-BCP, and LW-BCP)
were immersed in PBS and shaken at 37 °C for 24 h. Suction
filtration of the solution through a 70-μm filter was performed,
and the eluent was used for molecular detection and cell
experiments.

Flow cytometry
Cells were incubated with CD80-PE (1:400), CD86-FITC (1:200), IA/
IE-PE594 (1:200), CD11c-Blue (1:200) (Biolegend, USA) and
examined with a BD LSR FortessaX2 flow cytometer. The data
were analyzed using the FlowJo10 software.

ELISA
The assays were carried out according to the instructions of the
ELISA kits for HMGB1 (MU30043; Bioswamp, China), heat shock
protein (HSP)-60 (MU30603; Bioswamp, China), adenosine tripho-
sphate (ATP) (MU32950; Bioswamp, China), and uric acid (UA)
(C012; Nanjing Jiancheng, China).

Cellular immunofluorescence
For immunofluorescence staining, secondary antibodies with 594
and 488 fluorescence markers were bought from Abbkine, USA.
Images were obtained using a 40X confocal laser microscope
(Zeiss, USA).

Protein extraction and western blot analysis
RIPA lysate containing PMSF (Phenylmethanesulfonyl fluoride,
1 mmol·L−1) was added to cells for total protein extraction. The
proteins were treated with primary antibodies against TLR4,
MYD88, COL1A1, RUNX2, and OSX (1:1 000; Abclonal, China); P65
and p-P65 (1:1 000; CST, USA); and GAPDH (1:5 000; Proteintech,
USA). The WesternBright ECL HRP substrate kit (Advansta, USA)
was used for the visualization of the results.

Statistical analysis
Statistical analysis was performed with GraphPad Prism version
8.0.2 (GraphPad Software, USA). Results with P < 0.05 were
considered significant.
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