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Abstract 

Background:  In periodontitis, noncoding RNAs may play a regulatory role in the immune microenvironment 
through competitive endogenous RNA. We aimed to profile noncoding RNA expression and construct immune-
related ceRNA network in periodontitis.

Methods:  Five inflamed periodontal tissue and five healthy gingivae were collected for whole-transcriptome 
sequencing. Differential gene, functional enrichment, and protein–protein interaction network analysis were per-
formed to explore the function of differentially expressed genes. CIBERSORTx was used to analyze level of immune 
cell infiltration in the periodontal tissue. An immune-related competitive endogenous RNA network was constructed 
and expression of key regulators in the network was validated.

Results:  Compared with healthy gingiva, 200 mRNAs, 90 long noncoding RNAs, 65 microRNAs, and 518 circular RNAs 
were differentially expressed, and cell chemotaxis was significantly enhanced in inflamed periodontal tissue. Immune 
cell infiltration analysis showed that neutrophils, macrophages M1, T follicular helper cells, and naive B cells were 
significantly increased in periodontitis. Key regulators including JUN, FOS, THBS1, KLF2, WIF1, were identified and their 
expression was then validated.

Conclusion:  We constructed an immune-related competitive endogenous RNA network in periodontal tissue, which 
provided new insights into immune homeostasis in periodontitis and laid a foundation for further study of noncoding 
RNAs. Key regulators in this network may be promising targets for future periodontitis treatment.
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Introduction
Periodontitis is a chronic infectious inflammatory disease 
driven by reciprocally reinforced interactions between 
the dysbiotic microbiome and dysregulated immunity [1, 

2]. Many studies have found that expression of specific 
genes play a role in the pathogenesis of periodontitis and 
its susceptibility [3–5]. Therefore, comprehensive omics 
researches could provide us more information about the 
formation and progress of the diseases.

Noncoding RNAs (ncRNAs), including long non-
coding RNAs (lncRNAs), microRNAs (miRNAs), and 
circular RNAs (circRNAs), participate in multiple bio-
logical processes and in the pathogenesis of diseases, 
such as tumors, Alzheimer’s disease and other inflam-
matory diseases [6]. The competitive endogenous RNA 
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(ceRNA) hypothesis describes an intricate interplay 
among diverse RNA species. miRNAs complementarily 
pair with mRNAs through miRNA response elements 
(MREs), decreasing mRNA expression levels. lncRNAs 
or circRNAs also have MREs, to regulate mRNA expres-
sion levels through competitive binding with miRNA [7]. 
Several studies have constructed lncRNA-related ceRNA 
networks in periodontitis [8]. It has been reported that 
lncRNA MIAT and the MIAT-based ceRNA network 
may regulate the immune response during the progres-
sion of periodontitis [9]. Besides, lncRNA FGD5-AS1 
were reported to be involved in the pathogenesis of peri-
odontitis through ceRNA [10].

The complex coordination of inflammation and the 
immune response in the periodontal tissue is important 
in periodontitis. However, there are only a few studies 
on ceRNA related to immune regulation in periodontitis, 
and most studies only focus on several specific lncRNAs. 
Comprehensive analysis of immune-related ncRNAs and 
ceRNA network including lncRNAs and circRNAs has 
not been reported. Therefore, the objective of our study 
was to comprehensively profile the differential expres-
sion of mRNAs, lncRNAs, circRNAs and miRNAs in the 
inflamed periodontal tissue (IPT) and healthy gingiva 
through whole-transcriptome sequencing, and construct 
an immune-related ceRNA network in periodontitis, to 
identify key regulators which may serve as potential ther-
apeutic targets.

Material and methods
All methods were performed in accordance with the rel-
evant guidelines and regulations.

Sample collection
Tissue samples were collected during periodontal surgery 
at the Peking University Hospital of Stomatology from 
May 2020 to April 2021. All the participants gave written 
informed consent.

The inclusion criteria were as follows:

•	 Patients aged 18–65 years, systemically healthy, who 
agreed to participate in the trial and had finished 
non-surgical therapy.

•	 The IPT was collected from the operative site with 
pocket depth (PD) ≥ 6 mm and bleed index (BI) > 2 in 
patients diagnosed stage III and grade C periodonti-
tis.

•	 Healthy gingival tissue was collected from patients 
who underwent crown lengthening, PD ≤ 3 mm and 
BI ≤ 2, and showed no alveolar bone loss on radiogra-
phy.

The exclusion criteria were as follows:

•	 Patients with acute periodontal disease.
•	 Patients received antibiotics or underwent periodon-

tal surgery in the past 3 months.
•	 Smokers, and pregnant or lactating women.

Clinical measurements of PD, BI, clinical attachment 
loss (CAL), gingival recession (REC) were recorded. The 
tissue samples collected were rinsed with 0.9% normal 
saline, immediately frozen in liquid nitrogen, and stored 
at − 80 °C. In total, 20 periodontitis and 20 healthy sam-
ples were collected, five from each group were used for 
sequencing and 15 were used for validation.

High‑throughput sequencing and data processing
Total RNA was extracted from five IPT and five healthy 
gingivae, and sequenced using the BGISEQ-500 plat-
form (Huada Gene Technology). Sequencing data were 
filtered using SOAP nuke, and clean reads of lncRNAs 
and mRNAs were mapped to reference the genome using 
HISAT2. Stringtie was used to assemble and quantify 
transcripts. Small RNA clean reads were aligned to refer-
ence the genome (Hg19) using Bowtie 2 and quantified 
with FeatureCounts. Since single prediction software 
programs often have certain limitations, we used two 
programs, i.e., CIRCexplorer2 and find_circ, to identify 
circRNAs, and their intersection was retained for further 
analysis. All expression profiles were used for principal 
component analysis.

Differential gene analysis and functional enrichment 
analysis
DESeq2 was used for differential expression analysis, 
mRNAs, genes with P ≤ 0.05, FDR ≤ 0.05, and |log2FC 
(fold change)|≥ 1 were identified as differentially 
expressed genes (DEGs). GO and KEGG enrichment 
analyses were performed with clusterProfiler. Then, we 
used the MSigDB C5 GO and MSigDB C2 KEGG gene 
sets for gene set enrichment analysis (GSEA) [11]. miR-
Path was used to perform enrichment analysis of differ-
entially expressed miRNAs.

Construction of the protein–protein interaction network
We used the STRING database to identify the protein–
protein interaction (PPI) between differentially expressed 
mRNAs, with confidence > 0.7. The PPI network was then 
imported into Cytoscape for topology property analysis. 
Cytohubba were used to identify hub genes.

Immune cell infiltrations analysis
All expression profiles were imported to CIBERSORTx 
for immune cell infiltrations analysis. CIBERSORTx 
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is widely used in immune cell infiltration analysis for 
bulk RNA-sequence data. The correlation coefficient 
between differentially expressed lncRNA/circRNA and 
the expression of characteristic genes in immune-infil-
trated cells was calculated, and ncRNA/circRNA with 
correlation > 0.8 were selected as immune-related.

ceRNA network construction
miRNA–mRNA interactions were predicted using 
miRWalk 2.0, which uses 12 predicted algorithms, and 
target genes predicated by six algorithms were main-
tained for further analysis. The lncRNA‐miRNA inter-
actions were extracted from miRcode and starBase, 
and the circRNA-miRNA interactions were retrieved 
from the circBank database. Expression of lncRNAs, 
mRNAs, and circRNAs were used for co-expression 
analysis. Pearson’s correlation coefficients ≥ 0.95 were 
considered to indicate co-expression. The ceRNA 
network was constructed by integrating all validated 
interactions and co-expression pairs. On this basis, we 
constructed an immune-related ceRNA network com-
bined with the immune-related lncRNAs/circRNAs, 
and immune-related mRNAs from ImmPort database.

Validation of expression patterns
Total RNA from 15 inflamed periodontal tissue and 
15 healthy gingivae was isolated using TRIzol® Rea-
gent. The ABScript II cDNA Fist-Strand Synthesis Kit 
(ABclonal Technology Co., Ltd, Wuhan, China) was 
used for reverse transcription to synthesize cDNA. 
RT–qPCR was conducted using qPCR SYBR® Green 
Master Mix (Roche Holding AG, Basel, Switzerland) 
on an ABI Q3 system (Applied Biosystems, Foster City, 
CA, USA). GAPDH was used as endogenous reference. 
All primer sequences were synthesized by Sangon 
Biotech. mRNA expression was determined using the 
ΔΔCT method. Difference between two groups were 

evaluated with t tests. Statistical analyses were per-
formed with SPSS 22.0 (IBM, Armonk, NY, USA).

Results
Clinical characteristics and transcriptome profile
Demographic and clinical parameters of patients 
included in the study are listed in Table  1. The mean 
PD, BI, and CAL of the periodontitis group were signifi-
cantly higher than those in the healthy group (p < 0.01). 
Based on the transcriptome, we identified 16,880 lncR-
NAs, 19,962 mRNAs and 2654 miRNAs. For circRNAs, 
CIRCexplorer2 predicted 31,608 circRNAs and find_circ 
predicted 27,856, the intersection of the two was used for 
subsequent analyses (Additional file 1: Fig. s1).

Principal component analysis showed that the two 
groups could be divided well in 95% confidence intervals, 
suggesting that the transcriptome in IPT differs from 
healthy gingiva (Additional file 1: Fig. s1).

Differential expression gene analysis of RNA‑seq data
In total, 90 lncRNAs, 200 mRNAs, 65 miRNAs and 518 
circRNAs were found to be differentially expressed. 
Among them, 146 mRNAs were upregulated and 54 
downregulated; 44 lncRNAs were upregulated and 46 
downregulated; 41 miRNAs were upregulated and 24 
downregulated; and 163 circRNAs were upregulated and 
355 downregulated (Additional file 1: Fig. s1).

Functional enrichment analysis
GO analysis showed that 117 biological processes, 6 
molecular functions, and 5 cellular components were sig-
nificant enriched (P < 0.05). The top significantly enriched 
terms associated with our study are shown in Fig. 1a. The 
DEGs were mainly involved in cell chemotaxis. In the 
KEGG pathway analysis, 105 pathways were enriched, 
and 16 were significantly so. The results revealed that the 
DEGs were mainly enriched in the IL-17 signaling path-
way, TNF signaling pathway, cytokine-cytokine receptor 
interaction, and extracellular matrix receptor interaction 

Table 1  Demographic and clinical parameters of patients

Periodontitis(n = 5) Healthy gingiva(n = 5) p-value

Age 34.7 ± 5.21 31.2 ± 5.89 0.244

 Gender

 Male 2 3 p < 0.01

 Female 3 2

Pocket depth(PD; mm) 6.67 ± 0.33 2.80 ± 0.20 p < 0.01

Bleeding index(BI) 1.33 ± 0.33 0.60 ± 0.24 p < 0.01

Clinical attachment loss(CAL; mm) 7.50 ± 0.29 0.60 ± 0.40 p < 0.01

Recession(REC; mm) 0.83 ± 0.60 0.41 ± 0.80 0.241
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(Fig.  1b). miRNA enrichment analysis showed target 
genes of differently expressed miRNAs associated with 
the Hippo signaling pathway, FoxO signaling pathway, 
cAMP signaling pathway, TGF-β signaling pathway, and 
Wnt signaling pathway. In addition, the signaling path-
ways regulating stem cells pluripotency was significantly 
enriched (Fig. 1c).

The GSEA results of C5 gene sets showed that the T 
cell receptor complex, odontogenesis of dentin-contain-
ing teeth, P38MAPK cascade, neutrophil chemotaxis, 
chemokine activity, CXCR chemokine receptor binding, 
biomineralization, and extracellular matrix binding were 
significantly upregulated in the IPT. The results of the C2 
gene set showed that cytokine-cytokine receptor inter-
action, chemokine signaling pathway, TGF-β signaling 
pathway, P53 signaling pathway, Wnt signaling pathway, 
extra cellular matrix (ECM)-receptor interaction, focal 
adhesion, and cell adhesion molecule were significantly 
upregulated (Additional file 1: Fig. s2).

Construction of the PPI network
The PPI network was constructed (Fig.  2a), and clus-
tered into four clusters using the k-means clustering 

method. Cluster 1 included chemokine-and cytokine-
related genes such as CXCL6, IL6, and CXCR1. Cluster 
2 included transcription factors FOS, JUN, FOSB, and 
others. Cluster 3 included LAMA1, LAMB3, and others, 
located on the cell membrane and mediating extracellu-
lar matrix interactions. The top 10 DEGs with maximal 
clique centrality were selected as hub genes (Fig. 2b) that 
may play a critical role in immune homeostasis in IPT.

Immune cell infiltrations analysis
Immune infiltrations analysis showed 16 types of 
immune cell infiltrates (Fig. 3a). Lymphocytes, especially 
CD4 + memory T cells and B memory cells accounted 
for the highest proportion, followed by natural killer cells 
and macrophages. Compared with the healthy gingiva, 
the proportion of neutrophils, macrophages M1, T folli-
cular helper cells (Tfh), and naive B cells in the IPT was 
significantly higher, and that of macrophages M2 was sig-
nificantly lower (Fig. 3b).

The correlation analysis of 16 types of immune cells 
showed that monocytes, CD8 + T cells and Tfh cells were 
significantly positively correlated, suggesting a synergistic 

Fig. 1  Functional enrichment analysis. a Top significantly enriched GO terms, BP: biological process, CC: cellular component, MF: Molecular 
Function, b KEGG pathway analysis. Top 9 significantly enriched pathways in KEGG enrichment analysis. c miRNA KEGG pathway analysis
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Fig. 2  PPI network analysis. a PPI shows interactions between mRNAs. b Top 10 hub gene selected by MCC

Fig. 3  Results of immune cell infiltrations analysis. a Proportion of immune cells in each sample. b Comparison of immune cells infiltration of IPT 
and healthy gingiva. c heatmap of immune cell infiltration correlation, blue: negative correlation, red: positive correlation, *p < 0.05, **p < 0.01 d 
Scatter plot shows the correlation relationship between the 2 lncRNAs and 2 circRNAs with the highest correlation r: correlation coefficient
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role. CD8 + T cells were negatively correlated with 
CD4 + memory T cells and nature killer cells (Fig. 3c).

The correlation analysis showed 20 lncRNAs and 146 
circRNAs related to immune infiltration. lncRNA–EGOT 
and PRKCQ-AS1, and circRNA– hsa_circ_0002283 and 
hsa_circ_0004777 had the highest correlation (Fig. 3d).

Construction of ceRNA network
In total, 196 nodes (99 mRNAs, 43 miRNAs, 11 lncR-
NAs, and 45 circRNAs) and 502 edges were included 
in the ceRNA network (Fig.  4a). Based on the ceRNA 
network, an immune-related ceRNA network was con-
structed consisting of 57 nodes (4 lncRNAs, 13 miRNAs, 
16 mRNAs and 24 circRNAs) and 95 edges (Fig. 4b). Five 
miRNAs were recognized as hub gene, including miR-
141-3p, miR-508-3p, miR-1304-3p, miR-1293, and miR-
33a-5p (Fig. 4c).

Validation of expression patterns
Five mRNAs, i,e., FOS, JUN, KLF2, WIF1, and THBS1, for 
further validation via RT-qPCR on 15 periodontitis and 
15 healthy gingivae samples. The results showed higher 
mRNA relative expression of FOS, JUN, KLF2, THBS1, 
and WIF1 in the IPT (Fig. 5).

Discussion
To our knowledge, this was the first study to perform 
whole-transcriptome sequencing on IPT and healthy 
tissue, and described the expression profile of mRNAs, 
lncRNAs, miRNAs and circRNAs at the same time. Zou 
et al. [12] and Li et al. [13] only detected lncRNAs expres-
sions in periodontal tissues of patients with chronic 
periodontitis and aggressive periodontitis [12, 13]. Yu 
et al. [14] and Stoecklin-Wasmer et al. [15] detected the 
expression of circRNAs and miRNAs, and mRNAs and 
miRNAs repectively. Besides, all samples collected in our 
study were from deep intrabony defect of patients with 

Fig. 4  ceRNA network a. overall lncRNA/circRNA-miRNA-mRNA ceRNA network. b. immune-related lncRNA/circRNA-miRNA-mRNA ceRNA network

Fig. 5  Validation of mRNA relative expression by RT–qPCR. *p < 0.05, **p < 0.01
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periodontitis (Stage III Grade C), which could reflect the 
typical transcriptome in IPT.

Based on the whole-transcriptome analysis, we com-
prehensively constructed the immune-related ceRNA 
network in periodontitis. A previous study analyzed the 
transcriptome of gingiva from peri-implantitis, periodon-
titis, and healthy patients, and compared the difference of 
ceRNA network between periodontitis and peri-implan-
titis [16]. Lin et  al. also analysis the ceRNA network in 
periodontitis using dataset in GEO database [8]. These 
studies only described the lncRNA-related ceRNA net-
work, but circRNAs were not included.

Function enrichment analysis showed cell chemotaxis 
was significantly enriched. Besides, hub genes in the PPI 
network were mainly of chemokines and chemokine 
receptors. Another interesting finding of GO analysis was 
that tooth mineralization, and biomineralization were 
significantly upregulated in IPT. It has been reported that 
there are kinds of stem cells in IPT, which may be related 
to the function of these stem cells.

In our study, whole-transcriptome expression data 
and CIBERSORTx were used for Immune cells infiltra-
tion analysis, revealing the proportion of immune cells 
in periodontal tissue. It has showed that the proportion 
of neutrophils was not high and the highest proportion 
immune cell are lymphocytes. The results are consist-
ent with the immune cell infiltration analysis by Li et al. 
[17]. Single-cell sequencing could directly obtain the 
proportion of different kinds of cells in the tissue, which 
is more accurate than immune cell infiltration analysis. 
Recently single-cell sequencing analysis of periodontal 
tissue also showed that neutrophils accounted for only 
0.2% in healthy, and 0.8% in periodontitis samples, far 
lower than plasma cells (about 10%-30%) and T lympho-
cytes (about 20%-25%) [18]. Previous studies have con-
firmed that the main types of immune cells in advanced 
periodontitis were B cells and plasma cells, but the role of 
naive B cells in periodontitis has received little attention. 
We found the proportion of naive B cells was higher in 
IPT, although previous flow cytometry analysis showed 
few naive B cells (< 8%) in periodontal tissues [19]. How-
ever, a previous study found no significant difference in 
the number of naive B cells between chronic periodon-
titis, aggressive periodontitis and healthy group by flow 
cytometry [20]. In fact, the role of naive B cell in perio-
dontal tissue is still unclear and more research is needed.

JUN, FOS, KLF2, THBS1 and WIF1 were identified as 
key regulator in periodontitis and validated to be highly 
expressed in IPT through RT-qPCR. We identified 
these 5 genes as key regulators according to function 
enrichment analysis and PPI network. We identified 10 
hub genes in the PPI network, however, most of them 
are cytokines and chemokines, apart from JUN and 

FOS, which have been studied a lot. JUN and FOS are 
subunits of transcription factors AP-1. Activation of 
toll-like receptors (TLRs) stimulates the production 
of multiple cytokines, and eventually activates AP-1 
[21]. M1 macrophages regulate TLR4/AP1 and pro-
mote alveolar bone destruction in periodontitis [22]. 
A deep learning-based autoencoder predicted FOS and 
JUN to be critical immunosuppression genes and medi-
ate immune suppression in periodontitis [23]. WIF1, 
29-fold up-regulated in IPT, could directly interacts 
with Wnt ligands and may be key to the inhibition of 
Wnt signaling in IPT. KLF2 plays a key role in the acti-
vation of immune cells and participates in inflamma-
tory diseases by regulating the NF-κB pathway. Besides, 
KLF2 regulates osteoclast generation and inhibits 
PDSLCs osteogenic differentiation, thus participating 
in bone destruction [24]. THBS1 is an important medi-
ator involved in the chemotactic function of neutro-
phils and monocytes [25].

We identified 20 immune-related lncRNAs, and EGOT 
and PRKCQ-AS1 were the top two. EGOT modulates 
the PI3K/AKT, MAPK, and NF-κB pathways to activate 
inflammation [26]. After LPS and TNF-α stimulation, the 
expression of EGOT in THP-1 and CD4, CD8 + T cells 
increased. PRKCQ-AS1, has not been studied in peri-
odontitis, and our analysis showed that PRKCQ-AS1 may 
act as sponge of miR-141, miR-6512, miR-513c, and regu-
late the expression of CXCL1, PTGS2 (COX-2), THBS1 
and PRKCQ.

As the central molecules of the ceRNA network, miR-
NAs participate in maintaining periodontal homeostasis. 
miR-146a and miR-17 regulate the osteogenic differ-
entiation of PDSLCs in an inflammatory environment 
and miR-34a, miR-146a, and miR-223 inhibit osteoclast 
differentiation [27]. Topological analysis of the ceRNA 
network showed that miR-141-3p, miR-1304-3p, miR-
1293, and miR-33a-5p were hub miRNAs. Among them, 
the plasma derived miR-1304-3p exosome was down-
regulated in periodontitis, and returned to normal after 
periodontal treatment, suggesting miR-1304-3p may be 
involved in the regulation of periodontal inflammation 
[28]. miR-1293 directly bind to IL-6 mRNA and inhibit 
IL-6 expression [29]. miR-33a-5p can target the NF-κB 
pathway and Wnt/β-catenin pathway to regulate immune 
responses and affect cell proliferation, migration, and 
other biological processes [30].

circRNAs may play a key role in periodontal homeo-
stasis. However, the related research in its infancy. Most 
studies on the role of circRNAs in periodontitis have 
mainly focused on osteogenic differentiation, or cell pro-
liferation of PDLCs. In our study, 518 circRNAs were 
differentially expressed, and 146 were immune-related. 
Next, we will conduct further validation to clarify how 
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these circRNAs regulate the periodontal inflammatory 
process.

Our study identified the above key regulators in peri-
odontitis through bioinformatics analysis. Further exper-
imental studies are needed to verify the exact role of the 
identified ceRNA network in IPT. In addition, the sample 
size included in our study was only 5, in the future, with 
the development of technology and reduction of cost, we 
would further expand the sample size for more accurate 
ncRNA expression data in IPTs.

Conclusion
To our knowledge, this was the first study to delineate the 
expression profiles of ncRNAs and mRNAs in IPT, and 
too reveal the characteristics of immune cell infiltration 
in IPT. An immune-related ceRNA network was con-
structed. We confirmed that JUN, FOS, KLF2, THBS1, 
WIF1 and EGOT, PRKCQ-AS1 were highly expressed 
in IPT. Our study provided new insights into immunity 
homeostasis in periodontitis and laid a foundation for 
future research on ncRNAs.
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