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A B S T R A C T

Background and purpose: To determine the neck management of tongue cancer, this study attempted to con-
struct an artificial neural network (ANN)-assisted model based on computed tomography (CT) radiomics of
primary tumors to predict neck lymph node (LN) status in patients with tongue squamous cell carcinoma
(SCC).
Materials and methods: Three hundred thirteen patients with tongue SCC were retrospectively included and
randomly divided into training (60%), validation (20%) and internally independent test (20%) sets. In total,
1673 feature values were extracted after the semiautomatic segmentation of primary tumors and set as input
layers of a classical 3-layer ANN incorporated with or without clinical LN (cN) status after dimension reduc-
tion. The receiver operating characteristic (ROC) curve, accuracy (ACC), sensitivity (SEN), specificity (SPE),
area under curve (AUC) and Net Reclassification Index (NRI), were used to evaluate and compare the models.
Results: Four models with different settings were constructed. The ACC, SEN, SPE and AUC reached 84.1%,
93.1%, 76.5% and 0.943 (95% confidence interval: 0.891-0.996, p<.001), respectively, in the test set. The NRI of
models compared with radiologists reached 40% (p<.001). The occult nodal metastasis rate was reduced
from 30.9% to a minimum of 12.7% in the T1-2 group.
Conclusion: ANN-based models that incorporated CT radiomics of primary tumors with traditional LN evalua-
tion were constructed and validated to more precisely predict neck LN metastasis in patients with tongue
SCC than with naked eyes, especially in early-stage cancer.
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equally to this work.
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Introduction

The neck lymph node (LN) status significantly affects the survival
rate and determines the surgery protocol of oral cancer1,2; especially
in tongue cancer, a subsite occupying approximately 1/3 of the oral
cancer, with 20-40% of the patients suffering from occult neck metas-
tasis.3 Accurate preoperative detection of these occult nodal metasta-
sis is necessary.

Multiple radiological methods are available for the detection of LN
metastasis of head and neck cancer.4,5 Among which, computed
tomography (CT), a noninvasive, time-saving and economic modality,
is most widely used to provide information for preoperative nodal
staging based on morphological changes,3,6 with an accuracy that
depends on the experience of the radiologists while with naked eyes
and has been improved by assisted tools.

However, most of the tools were at the nodal levels,7-9 ignoring
the radiologically invisible nodal metastasis which clinicians more
attended to. And those at the patient levels10,11 showed potential of
the nodal metastasis predictive ability from primary tumors while
with demerits like postoperative assessment, small and non-homo-
geneous dataset, relatively low accuracy, and uncommon instru-
ments which made them less convincing and accessible for clinical
application. What’s more, the proportion of early stage where contro-
versy on whether neck dissection should be performed existed, is
limited.10 Thus, improvement is needed.

Radiomics is a method that clinicians and radiologists use to con-
vert medical imaging into high-dimensional quantitative data for
research on clinical decision-making support.12 Theoretically, radio-
mics can noninvasively facilitate quantifying tumor heterogeneity at
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the morphological, genic and even molecular levels based an auto-
mated data characterization algorithm to provide information con-
cerning the staging, diagnosis, prognosis, and prediction of treatment
responses.13,14 Many studies have successfully applied tumor radio-
mics feature analysis to predict the node status of cervical cancer,
bladder cancer, colorectal cancer, etc., and achieved satisfactory accu-
racy.15-18 Accordingly, we assume that the CT radiomics of tongue
cancer may have high value in predicting neck LN status.

While facing massive datasets, researchers often turn to artifi-
cial neural network (ANN) for the strength in fields involving
high-dimensional data with nonlinear relationships.19 Therefore,
in this study, we will show our attempt to construct and validate
ANN models for the prediction of neck LN metastasis in tongue
cancer based on CT radiomics and related clinical factors, and
assess the application on early stage tumors, especially on the
occult metastasis.
Material and methods

Study design

This diagnostic study was approved by the ethics committee and
conducted under the guidance of international ethical standards (IRB
number: PKUSSIRB-202059160). Patients with tongue cancer
between January 2013 and December 2018 were enrolled retrospec-
tively according to the following inclusion criteria: (a) underwent
primary tumor resection and neck dissection (ND); (b) histologically
diagnosed with squamous cell carcinoma (SCC) and examined for cer-
vical LN enlargement; (c) available contrast-enhanced computed
tomography (CECT) data for the head and neck region performed
fewer than 20 days before surgery; and (d) detailed clinical informa-
tion. The exclusion criteria were as follows: (a) previous tumors; (b)
preoperative chemotherapy or radiotherapy; (c) distant metastasis
before surgery; (d) no visible tumor lesion on CT scans; (e) radiologi-
cal interference from artifacts. The recruitment pathway is shown in
Fig. 1.

The surgical protocol was in accordance with the National Com-
prehensive Cancer Network (NCCN) guidelines. Positive clinical LN
(cN) status was defined as at least one node with rounded contour,
cystic or necrotic change, enlargement, or ill-defined margins
detected on CT according to the American Joint Committee on Cancer
(AJCC) Cancer Staging Manual, eighth edition. The pathological LN
(pN) status and degree of differentiation were determined by histo-
pathological examination, and the pN status was regarded as the
gold standard.
Fig. 1. The recruitm
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CT imaging protocol

CECT scanning of the head and neck with a 512 £ 512 matrix,
0.4 £ 0.4 £ 0.75 mm3 voxel size, tube voltage of 120 kV, and tube cur-
rent of 225−300 mA was performed on all patients 60 seconds after
administration of intravenous iopamidol (1.2 mL/kg, 2 mL/s, 370 mg
I/mL, Bracco) using a GE Optima CT680 scanner. The images were
exported in Digital Imaging and Communications in Medicine
(DICOM) format for image feature extraction.

ROI segmentation

Semiautomatic tumor segmentation of the CECT dataset was per-
formed independently by a radiologist with 8 years’ experience in
head neck imaging and was blinded to the clinic-pathological infor-
mation of patients, using a free and open source software (3D Slicer,
version 4.10.1; available at http://slicer.org/). First, the tumor lesion
region and surrounding tissue region were roughly delineated manu-
ally. Next, the Fast GrowCut algorithm20 implemented in 3D Slicer
contoured the tumor lesion region automatically and transformed it
into the region of interest (ROI). Third, the radiologists scrutinized
the ROI and repeated the previous steps until adjacent hard tissue
and air were removed from the ROI. Finally, the ROI and the original
CT dataset were exported and imported to the Imaging Biomarker
Explorer (IBEX),21 an open source software based on MATLAB 2014b
(MathWorks). Besides, another radiologist with 4 years’ experience
in head neck imaging, performed ROI drawing of 60 random chosen
patients independently to evaluate the inter-observer variability of
model prediction.

Feature extraction and dimension reduction

Features and relevant parameters were extracted from the ROI of
each patient through IBEX without preprocessing, and missing values
were deleted. The categories and parameters of the features are listed
in Supplementary 1. Then, principal component analysis (PCA), car-
ried out in MATLAB 2018b (MathWorks), was used to reduce the
dimension of the features without destroying the derivation of the
raw data and generate combined feature groups.

Construction and validation of the ANN model

A classical 3-layer design was adopted for the architecture of the
ANNs in MATLAB 2018b. The combined feature groups with or with-
out the cN status were added as nodes in the input layer. Certain hid-
den layers and one single output layer were used to process the data
ent pathway.
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Fig. 2. The workflow diagram of the model architecture. First, the CT data of the patients were acquired. Second, semiautomatic segmentation of the ROI by rough manual delinea-
tion and the Fast GrowCut algorithm. Third, the radiomics features were extracted. Fourth, dimension reduction by PCA (the diagram was derived from that in en.m.wikipedia.org/
wiki/Principle_component_analysis) and modeling by the ANN were performed.
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and produce the outcome value under different weights. Bias was
added to avoid overfitting during the process. The patients were ran-
domly divided into training (187, 80%), validation (63, 20%) and inter-
nally independent test (63, 20%) sets. The patient data with negative
clinical LN status (cN0) and early-stage cancer (T1-2cN0) underwent
more rounds of training by an ensemble learning algorithm. The out-
come values were transformed into integers by the round function.
Then, the training process by the Levenberg-Marquardt algorithm
kept updating the weights and parameters in the ANNs to ensure
that the outputs of the network were close to the gold standard pN
for each case.
Table 2
Statistical analysis

The intra-class correlation coefficient (ICC) was calculated to evalu-
ate the inter-observer variability of all models prediction result with
SPSS 26.0, and models with ICC value no less than 0.75 were regarded
as highly reproducible. The occult nodal metastasis rate in group T1-2,
Net Reclassification Index (NRI) compared with cN,22 area under the
curve (AUC), sensitivity (SEN), specificity (SPE), accuracy (ACC) and
receiver operating characteristic (ROC) curve of the models and predic-
tion from radiologists were determined for different groups with MAT-
LAB 2018b. The level of statistical significance of p value were defined
as .05. The whole workflow is displayed in Fig. 2.
Table 1
The clinical baseline information of patients included.

pN Positive Negative p

n = 143 n = 170

Age .910
Mean§SD 55.15§12.89 54.99§12.03
Median 55.00 55.00

Gender .164
Female 63 61
Male 80 109

T Classification .008
T1 28 (19.2%) 59 (34.7%)
T2 74 (51.7%) 82 (48.2%)
T3 12 (8.4%) 6 (3.5%)
T4 29 (20.3%) 23 (13.5%)

Max Size <.001
Mean§SD 3.16§1.22 2.63§1.05
Median 3.00 2.50

Histological Grade .158
I 25 68
II 109 97
III 9 5

pN: pathological lymph node status, SD: standard deviation.
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Results

Out of a total of 1402 patients from January 2013 to December
2018, 313 patients who met the inclusion criteria were included in
this study cohort. The clinical characteristics of these 313 patients are
summarized in Table 1. After the 94 values listed in Supplementary
2 were excluded for missing data, 1673 values of 141 features in 10
categories were extracted and included.

The completeness rate q of the original features was set to 0.95
and 0.99 for data reduction. As a result, 28 and 83 groups of combined
features were generated, respectively. The features ranked by PCA
were divided into positive relative and negative relative groups and
are listed in Supplementary 3-6. In total, 4 ANN models named after
the input items and q value were constructed, which included a
model with radiomics incorporated with cN and a q of 0.95
(cNRAD95), a model with radiomics incorporated with cN and a q of
0.99 (cNRAD99), a model with radiomics and a q of 0.95 (RAD95) and
a model with radiomics and a q of 0.99 (RAD99). According to the
input items, 28, 29, 83, and 84 nodes were set in both the input layer
and the hidden layer in the RAD95, cNRAD95, RAD99, and cNRAD99
models, respectively. The code of the ANNs was uploaded in GitHub
(https://github.com/zyw-kq/Models).
Performance of models.

Group Model Accuracy Sensitivity Specificity AUC (95%CI)*

All cN 73.6% 53.8% 90.6% -
cNRAD95 86.9% 83.9% 90.0% 0.934 (0.908-0.961)
cNRAD99 87.6% 84.6% 90.6% 0.936 (0.909-0.964)
RAD95 75.5% 68.5% 81.8% 0.827 (0.782-0.873)
RAD99 84.1% 81.8% 86.5% 0.919 (0.890-0.949)

cN0 cNRAD95 85.5% 65.2% 94.2% 0.912 (0.870-0.954)
cNRAD99 87.7% 68.2% 96.1% 0.931 (0.893-0.968)
RAD95 77.7% 65.2% 83.1% 0.816 (0.754-0.878)
RAD99 85.5% 83.3% 86.4% 0.926 (0.891-0.960)

T1-2 cN 71.6% 43.1% 92.2% -
cNRAD95 88.1% 81.4% 92.9% 0.937 (0.906-0.968)
cNRAD99 86.8% 81.4% 90.8% 0.932 (0.900-0.963)
RAD95 76.5% 62.7% 86.5% 0.826 (0.773-0.880)
RAD99 84.0% 78.4% 87.9% 0.919 (0.887-0.952)

T1-2cN0 cNRAD95 86.7% 67.2% 95.4% 0.920 (0.876-0.964)
cNRAD99 86.7% 67.2% 95.4% 0.930 (0.889-0.970)
RAD95 79.8% 63.8% 86.9% 0.837 (0.773-0.902)
RAD99 86.2% 82.8% 87.7% 0.933 (0.899-0.967)

Test set cNRAD95 82.5% 64.3% 97.1% 0.946 (0.895-0.997)
cNRAD99 84.1% 93.1% 76.5% 0.943 (0.891-0.996)
RAD95 85.7% 74.1% 94.4% 0.899 (0.815-0.983)
RAD99 85.7% 82.1% 88.6% 0.917 (0.850-0.984)

AUC: area under curve; CI: confidence intervals.
* The p values were all less than .001

https://github.com/zyw-kq/Models


Fig. 3. The ROC curves of models are shown in group All (A), cN0 (B), T1-2 (C), T1-2cN0 (D) and Test set (E) respectively. The ROC curves show good performance of the models in the
test set group and in the group of all patients. The RAD95 model is the worst-performing model, while the other three models perform well in certain parts of the curves in different
groups, which implies different indications for models of different stages.
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All the ICC value of the models were no less than 0.75. The AUC
with 95% confidence intervals (95%CI), SEN, SPE and ACC of the cN,
RAD95, RAD99, cNRAD95 and cNRAD99 models for predicting pN
and the performance of all the models on the patient groups of the
test set, cN0, early primary tumor stage (T1-2) and T1-2cN0 are listed
in Table 2, the occult nodal metastasis rates are 30.9%, 23.8%, 15.1%,
12.7% and 12.9%, respectively. The ROC curves of all the above groups
are displayed in Fig. 3. The NRI values of models compared with cN
were visually displayed in Fig. 4, and all the p value were less than
.001 except for RAD95 in both group all (p=.19) and group T1-2
(p=.04).
Discussion

Since the performance on evaluating neck metastasis by radiolog-
ists or existing assisted tool still remained unsatisfied, confusing the
neck management of tongue cancer, in this study, we constructed and
validated artificial neural network-based models with CT radiomics of
primary tumors to predict neck lymph node metastasis in tongue can-
cer noninvasively and preoperatively, especially in the early stage
group and occult metastatic lesions, with an improvement reaching
Fig. 4. The NRI values of models compared with cN in group All and group T1-2. All the mod
to 40%.
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40% assessed with Net Reclassification Index (p<.001) and a reduction
of occult nodemetastasis rate from 30.9% to a minimum of 12.7%.

Above all, the cohort in this study could be representative of the
controversy regarding clinical neck management. Almost 80% of
patients in this study suffered from T1-2 tumors, where occult nodal
metastasis occurred most often,23,24 making it more difficult to detect
the metastasis clinically, while ND was routinely performed in T3-4
cases. In addition, the occult nodal metastasis rate of T1-2 tumors in
this study was 30.9%, close to a mean of 25.9%, ranging from 8.2-
46.3%.23

In this study, the primary tumor was chosen as the ROI. Recent
proposed similar models originated from the features of either the
primary tumor10,11 or the nodes.7-9 The former initially determines
the node status by characteristics such as tumor budding, thickness
and invasive depth,25-27 which could be better references for whether
to perform ND and more feasible because the latter ignores the radio-
logically invisible nodes and is unable to make one-to-one matches
from radiological nodes to pathological ones. Moreover, the decision
is made prior to how to perform the ND as a result of the relatively
distinct clinical characteristics of patients needing to undergo com-
prehensive ND and confusion between those of observation and
selective ND under the guidance of the NCCN.
els exceeded the naked eye evaluation, especially in group T1-2, with improvements up
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Encouragingly, the performance of these models was remarkable.
Not only did the RAD99, cNRAD95 and cNRAD99 models outper-
formed the radiologists in this study in terms of the ACC and NRI or
other reports4,5 in terms of both the SEN and SPE, but also showed a
similar satisfying overall performance, such as with the ACC of the
test set in a larger and more homogeneous dataset, and with more
reliable and reproducible processes, such as semiautomatic segmen-
tation, and more common CT machines, compared to the models
from a study based on dual-energy CT texture with ACC, SEN and SPE
values of 88%, 100% and 67%, respectively.10

Furthermore, our models show good discriminatory ability in cN0
patients with AUCs ranging from 0.816 (95%CI:0.754-0.878, p<.001)
to 0.913 (95%CI:0.754-0.878, p<.001) and ACCs ranging from 77.7% to
87.7%, especially in T1-2 tumors with AUCs ranging from 0.837
(95%CI:0.773-0.902, p<.001) to 0.933 (95%CI:0.899-0.967, p<.001)
and ACCs ranging from 79.8% to 86.7%. It is widely known that the
management of clinical negative LNs in patients with tongue cancer
remains controversial globally28,29 due to the high occult nodal
metastasis rate mentioned above. Even one node metastasis will
decrease the survival rate by almost 50%.30,31 Work such as the con-
struction of a series of patient-level machine learning models based
on preoperative factors, such as age, sex, tobacco use and alcohol use,
to predict early-stage tongue cancer neck metastasis have been
done,11 while the best-performing model (i.e., the RF model with an
AUC of 0.786, an SEN of 0.85, and an SPE of 0.75) was inferior to most
of our models based on CT scans. Besides, one of our models,
cNRAD95, reduced the occult nodal metastasis rate from 30.9% to
12.7%, and the NRI showed 40% improvement from naked eyes evalu-
ation in the T1-2 group (p<.001).

With the merits above, application based on our models during
the clinical process might be expected, due to the relatively objective
combined predictive information from tumor adding to neck evalua-
tion. While for the time being, most clinicians and radiologists assess
nodal status through palpable or radiologically visible nodes. More-
over, factors from primary tumors that affect the neck metastatic rate
and mentioned above,25-27 are complex and often ignored for neck
evaluation in the clinical process, and were potentially embedded in
our models, which is more convenient, economics, non-invasive and
equally accurate while compared with well-known precise method,
positron emission tomography (PET) and node biopsy.4,5 Comprehen-
sive information would be obtained and the clinical application for
these models is promising. In addition, with the assistance of artificial
neural network, tumor radiomics signatures may expand the conno-
tation of T classification.

There were still limitations in this study. More steps could have
been taken to improve the robustness of the features, such as imaging
at multiple time points or combining multiple modeling methodolo-
gies.13 If possible, prospective work should be done to further vali-
date the accuracy of the model.

Conclusions

In conclusion, we constructed and validated reliable ANN-based
models that incorporated CT radiomics of primary tumors with tradi-
tional LN evaluations to more precisely predict cervical LN metastasis
in patients with tongue cancer, especially in those with early-stage
disease.
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