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Abstract

Aim: This study sought to investigate associations of 25-hydroxyvitamin D (25(OH)

D) metabolites with periodontitis and to assess causality using Mendelian randomiza-

tion (MR).

Materials and Methods: This study included 7246 participants of the National Health

and Nutrition Examination Survey, 2009–2012. The association of periodontitis with

25(OH)D metabolites was assessed using multivariable logistic regression analysis.

Two-sample MR for 25(OH)D, 25(OH)D3, and C3-epi-25(OH)D3 with periodontitis

(n = 17,353 cases/28,210 controls) was conducted. The principal analysis employed

the inverse-variance-weighted (IVW) approach. We controlled for horizontal pleiot-

ropy using five additional methods.

Results: Based on the observational study, each 1-point increase in standard

deviation of 25(OH)D lowered the risk of periodontitis by 15% (OR = 0.85, 95%

confidence interval [CI]: 0.78–0.93, p = .006) after multivariable adjustment. A

similar relationship was observed between 25(OH)D3 and periodontitis

(OR = 0.88, 95% CI: 0.80–0.97, p = .031). Furthermore, a potential non-linear

association was found between periodontitis and both 25(OH)D and 25(OH)D3.

However, C3-epi-25(OH)D3 was not found to be associated with periodontitis

risk. IVW-MR showed that periodontitis risk was not significantly associated

with genetically increased levels of 25(OH)D (OR = 1.02, 95% CI: 0.90–1.16,

p = .732), 25(OH)D3 (OR = 1.04, 95% CI: 0.93–1.17, p = .472), or C3-epi-25

(OH)D3 (OR = 1.11, 95% CI: 0.87–1.41, p = .400). The pleiotropy-robust MR

approaches yielded similar results after we had eliminated the variants with hori-

zontal pleiotropy risk.

Conclusions: Cross-sectional observational analysis identified significant relationships

between periodontitis with 25(OH)D metabolites, while findings based on MR study

did not support a causal role.
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Clinical Relevance

Scientific rationale for study: Previous observational studies have found that low vitamin D levels

are associated with the occurrence of periodontitis. However, most of these studies only mea-

sured the 25-hydroxyvitamin D [25(OH)D] levels but did not assess the levels of its subtypes,

including 25(OH)D3 and C3-epi-25(OH)D3, an isomer of 25(OH)D3. It is not clear whether the

associations of 25(OH)D metabolites with periodontitis are causal or not. If periodontitis is

caused by vitamin D deficiency, it would be clinically relevant to prevent periodontitis in people

at high risk, as vitamin D deficiency is not uncommon and can be corrected safely.

Principal findings: In this study, we used multivariable regression of observational data and two-

sample Mendelian randomization analysis to investigate the relationship and potential causality

between 25(OH)D metabolites, including total 25(OH)D, 25(OH)D3, and C3-epi-25(OH)D3, and

periodontitis. There were conflicting findings for a link with periodontitis for the observational

analysis of biochemically measured 25(OH)D metabolites versus the genetically predicted levels

of these metabolites. The present findings do not suggest a definitive association of periodonti-

tis risk with measured and genetically predicted levels of 25(OH)D and its metabolites.

Practical implications: This study compared observational estimates of the association between

25(OH)D metabolites and periodontitis with Mendelian randomization estimates based on

genetic instruments. It might provide a whole picture of observational association and causal

relationship between vitamin D status and periodontitis, which implies that the blood levels of

25(OH)D or its metabolites are not likely to be causal for the development of periodontitis.

1 | INTRODUCTION

Periodontitis is a complex disease caused by an imbalance in the

interaction between oral microbes and the host inflammatory

response. On account of its high prevalence rate and its potential role

in the development of diabetes, cardiovascular diseases, depression,

and cancer, it poses a heavy global medical burden and presents a

global public health challenge (Lalla & Papapanou, 2011; Araujo

et al., 2016; Disease, Injury, & Prevalence, 2017; Czesnikiewicz-Guzik

et al., 2019; Peres et al., 2019; Nwizu et al., 2020; Sanz et al., 2020;

Jiao et al., 2021). Vitamin D status is key to the metabolism of calcium

and phosphorus. Accumulating evidence from in vitro and animal

studies suggests that vitamin D might be beneficial for periodontal

health via its anti-inflammatory effects and reduction in the number

of harmful bacteria (Jagelaviciene et al., 2018; X. Hu et al., 2020).

A number of epidemiological studies have evaluated the associa-

tion between vitamin D and periodontitis; however, the relationship

remains uncertain. A large-scale cross-sectional study involving over

15,000 participants showed that lower levels of vitamin D were asso-

ciated with the presence and severity of periodontitis (Ebersole

et al., 2018). The findings were further confirmed by a meta-analysis

(Machado et al., 2020). Additionally, a non-randomized clinical trial on

82 patients with moderate periodontitis found that vitamin D supple-

mentation, as an adjunct to non-surgical periodontal therapy (NSPT),

was beneficial for the treatment of periodontitis (Perayil et al., 2015).

In contrast, Antonoglou et al. reported a case–control study on

55 chronic periodontitis patients and 30 periodontally healthy sub-

jects, and demonstrated that there was no association between the

25-hydroxyvitamin D [25(OH)D] levels and periodontal health status

(Antonoglou et al., 2015). In addition, a randomized, double-blinded,

placebo-controlled trial of 360 patients with moderate or severe

periodontitis after NSPT reported that using vitamin D supplementa-

tion as an NSPT adjunctive had limited clinical importance and no

durable efficacy with regard to probing depth and attachment loss

(Gao et al., 2020).

Existing observational studies are subject to a few limitations,

such as small sample size, insufficient adjustment of some impor-

tant covariates, and lack of assessment of different metabolites of

total 25(OH)D. Moreover, older clinical trials reported inconsistent

findings and were limited by administration of inadequate doses or

inability to separate the effect of vitamin D and calcium. Genetic

Mendelian randomization (MR) analysis is a tool that uses genetic

data to elucidate the causal relationship between exposure and

outcome (Smith & Ebrahim, 2003). Since genetic alleles are

randomly assigned during meiosis and are not correlated with

environmental factors, the genetic associations observed from MR

analysis are less likely to be affected by confounding bias and

reverse causation risk (Smith et al., 2008). Therefore, MR studies

are referred to as “nature-created randomized, double-blind trials”
and are considered as a complementary approach to randomized

controlled trials (RCTs). Given the inconsistent findings from obser-

vational studies and the lack of strong evidence from RCTs, MR

studies may be a useful supplementary tool to explore the causality

between vitamin D and periodontitis.

Therefore, the present study aims to investigate the association

of 25(OH)D and its metabolites 25(OH)D3 and C3-epi-25(OH)D3 with

periodontitis based on observational data, and to assess evidence for

the causal relationship between periodontitis and 25(OH)D and its

metabolites using publicly available genetic data under the framework

of the MR analysis.
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2 | METHODS

2.1 | Overall study design

The present study was conducted in two stages, as shown in Figure 1.

In stage 1, using data deposited in the National Health and Nutrition

Examination Survey (NHANES) database, we performed multivariable

regression analysis to determine the association of total 25(OH)D,

25(OH)D3, and C3-epi-25(OH)D3 with periodontitis (CDC, 2006). In

stage 2, we assessed the causal effect of genetically determined levels

of 25(OH)D metabolites on periodontitis by MR analysis of summary

statistics data from the genome-wide association study (GWAS).

Data from the largest published GWAS datasets were used, which

contained the 25(OH)D levels in 443,734 participants and 25(OH)D3

and C3-epi-25(OH)D3 levels in 40,562 participants (Manousaki

et al., 2020; Zheng et al., 2020). Further, the effect of genetic variants

on periodontitis was estimated using the data for 17,353 periodontitis

patients and 28,210 controls obtained from the Gene-Lifestyle Inter-

actions in Dental Endpoints (GLIDE) consortium (Shungin et al., 2019).

2.2 | Data sources and study population

NHANES is a continuous cross-sectional series of surveys that were

conducted on non-institutionalized U.S. civilians. It uses multistage

probability sampling to select a nationally representative sample and

assesses their health and nutritional status. The survey includes

household interviews, physical examinations, and laboratory tests. It

was performed by the National Center for Health Statistics of the

Centers for Disease Control and Prevention (CDC). Information about

the sampling method and data collection is available in a previous

publication (CDC, 2006). The study received the approval of the

Ethics Review Board of the National Center for Health Statistics, and

all the participants provided their written informed consent.

To investigate the association between 25(OH)D metabolites in

serum and periodontitis, we used publicly available NHANES survey

data from the 2009/2010 and 2011/2012 cycles. Periodontal status

was evaluated by dentists through a full-mouth periodontal examina-

tion, which included assessment of gingival recession and pocket

depth measurements. Participants aged 30 years and older were eligi-

ble for the periodontal examination if they had one or more natural

teeth and no health conditions that required antibiotic prophylaxis

before periodontal probing. The current study included 9402 eligible

adults for further analysis. After excluding participants without serum

25(OH)D measurements (n = 525) or results of periodontal examina-

tion (n = 1631), a total of 7246 individuals were included for further

analysis. A flow-chart depicting the selection of the study participants

is shown in Figure S1.

2.3 | Measurement of serum 25(OH)D and its
metabolites

Sample collection, transformation, storage, and analysis have

been described in the laboratory procedure manual. Briefly, the

serum levels of 25(OH)D metabolites were assessed with liquid

chromatography–tandem mass spectrometry (LC–MS/MS) at the

National Center for Environmental Health. Calibration and quality

control were conducted according to the laboratory procedure

manual of NHANES. For LC–MS/MS, the total 25(OH)D level

(nmol/L) was calculated by adding the levels of 25(OH)D3 and

25(OH)D2; the level of C3-epi-25(OH)D3 was not included in this

calculation.

2.4 | Ascertainment of periodontitis

Classical diagnosis of periodontitis was conducted based on clinical

parameters such as periodontal pocket probing, bleeding on probing

(BOP), plaque index, and clinical attachment levels (CALs) (Eke

et al., 2012). The following conditions were diagnosed as periodonti-

tis: mild periodontitis: ≥2 interproximal sites with AL ≥3 mm and ≥2

interproximal sites with PD ≥4 mm (not on the same tooth) or one site

with PD ≥5 mm; moderate periodontitis: ≥2 interproximal sites with

AL ≥4 mm (not on the same tooth) or ≥2 interproximal sites with PD

≥5 mm (not on the same tooth); severe periodontitis: ≥2 interproximal

sites with AL ≥6 mm (not on the same tooth) and ≥1 interproximal site

with PD ≥5 mm. The others were diagnosed as “No periodontitis”: no
evidence of mild, moderate, or severe periodontitis.

2.5 | Assessment of covariates

Information on demographic characteristics (age, gender, ethnicity,

education level, and family income), lifestyle factors (smoking, drink-

ing, diet, and physical activity), and health conditions (hypertension,

diabetes, hypercholesterolaemia, cardiovascular disease, and cancer)

was obtained with the help of a questionnaire interview. Body weight

and height were obtained from physical examinations and used to cal-

culate body mass index (BMI). A non-smoker was defined as someone

with a smoking history of less than 100 cigarettes per lifetime. Individ-

uals with a smoking history of more than 100 cigarettes per lifetime
F IGURE 1 Overall study design based on observational analysis
and Mendelian randomization.
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who were currently not smoking were classified as former smokers,

and those who currently had a regular smoking habit were classified

as current smokers. Based on alcohol use, the participants were

divided into non-drinkers (0 drinks per day), moderate drinkers

(<2 drinks per day for males and <1 drink per day for females), and

heavy drinkers (≥2 drinks per day for males and ≥1 drink per day for

females). The overall dietary quality was assessed using the Health

Eating Index-2015 (HEI-2015), which was a score ranging from 0 to

100, with a higher score indicating a healthier diet (Krebs-Smith

et al., 2018). Total HEI-2015 scores were computed by summing the

scores for 13 components, including 9 adequacy components (total

fruits, whole fruits, total vegetables, greens and beans, whole grains,

dairy, total protein foods, seafood and plant proteins, and fatty acids)

and 4 moderation components (refined grains, sodium, added sugars,

and saturated fats). Both dietary data and food serving equivalents

are needed to compute the HEI-2015 score. The dietary intake was

estimated using the mean value of the two 24-h recall data. The first

day's interview was conducted in person in the mobile examination

centre, where the participants underwent physical examination. The

second day's interview was conducted by telephone 3–10 days after

the first day. The food serving equivalents were computed using the

USDA Food Patterns Equivalent Database. Leisure-time physical

activity was assessed based on the number of times the participants

engaged in physical activities in a week and the corresponding meta-

bolic equivalents (METs). Based on the MET values, the participants

were grouped into low level (no leisure-time physical activity), moder-

ate level (1–5 times with METs ranging from 3 to 6 or 1–3 times with

METs >6), and vigorous level (>5 times with METs ranging from 3 to

6 or >3 times with METs >6). Healthy eating index was assessed

based on 24-h dietary recall data from interviews. Medical conditions

were confirmed if the response was “yes” to the question “Have you

ever been told by a doctor or other health professional that you had

hypertension, diabetes, hypercholesterolaemia, coronary heart dis-

ease, congestive heart failure, stroke, angina, heart attack, or cancer?”.

2.6 | Statistical analysis

Data from 2009/2010 and 2011/2012 were combined, and 4-year

sampling weights were constructed and incorporated in all the ana-

lyses based on the sampling strategy of NHANES. Rao–Scott chi-

square tests and t-tests were applied for analysing the association of

periodontitis with categorical variables and continuous variables,

respectively. A multivariable logistic regression analysis was per-

formed to ascertain the effects of serum 25(OH)D metabolites on the

likelihood of prevalent periodontitis. Odds ratios and the correspond-

ing 95% confidence intervals were calculated. The levels of 25(OH)D

metabolites were categorized into four groups based on their quan-

tiles. The values of all the metabolites were log-transformed and ana-

lysed as continuous variables based on their skewness. In the

multivariable analysis, we adjusted for age, gender, and ethnicity in

model 1 and for BMI, education level, family income-poverty ratio,

smoking status, alcohol use, leisure-time physical activity, and healthy

eating index in model 2. Further, model 3 was adjusted for conditions

including hypertension, diabetes, hypercholesterolaemia, cardiovascu-

lar disease, and cancer. The non-linear association between each vita-

min D metabolite and periodontitis risk was assessed using restricted

cubic spline regression with three knots (25th, 50th, and 75th), with

the multivariable adjustment mentioned above. All analyses were

performed using R 4.1.0 (http://www.r-project.org). Two-sided levels of

significance were calculated, and the significance level was set as .05.

2.7 | Mendelian randomization

2.7.1 | Basic concept of MR analysis

Since genetic variants are randomly allocated at the time of gamete

formation and not correlated with environmental factors, MR analysis

is less vulnerable to bias from reverse causation and confounding than

traditional observational methods. Therefore, in this study, MR analy-

sis was used to identify single nucleotide polymorphisms (SNPs)

associated with 25(OH)D metabolites and the SNPs associated with

periodontitis, and the SNPs identified were combined to determine

the relationship between 25(OH)D metabolites and periodontitis risk.

For valid causal estimates, the genetic variants used as instrumental

variables (IVs) in MR analyses need to meet the following criteria

(Figure 2): (1) the genetic variants need to be correlated with the

levels of 25(OH)D metabolites; (2) they should not be affected by

confounding factors; and (3) they should affect periodontitis only via

25(OH)D metabolite levels.

2.7.2 | Data sources

Our MR analysis used a two-sample design and used publicly available

summary statistics from large-scale GWAS datasets. For total 25(OH)

D, we obtained genetic data for 25(OH)D from one of the biggest

GWAS meta-analyses on circulating levels of 25(OH)D deposited in

the UK Biobank (which included white British participants

[N = 401,460]) and combined it with a previous GWAS involving

42,274 Europeans (Manousaki et al., 2020). Measurement of 25(OH)

D was performed at baseline (2006–2010) using chemiluminescence

immunoassay, and the measured values were log-transformed and

standardized to adjust the skewness in the distribution of 25(OH)D

levels. Additionally, the season in which the data were collected and

vitamin D supplementation were adjusted for, in order to identify

genetic variants that were significantly correlated with circulating

25(OH)D levels. We obtained genetic estimates for 25(OH)D3 and

C3-epi-25(OH)D3 based on GWAS data for 40,562 participants of

European origin from the EPIC-InterAct study, the EPIC-Norfolk

study, and the EPIC-CVD study (Zheng et al., 2020). The plasma levels

of 25(OH)D metabolites were assessed with LC–MS/MS at VITAS,

Oslo. Genetic variants associated with periodontitis were identified

from publicly available data of the GLIDE consortium, which included

a meta-analysis of seven GWAS studies on populations of European

4 LI ET AL.
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descent (17,353 periodontitis cases and 28,210 controls) (Shungin

et al., 2019). Periodontitis cases were defined according to either the

CDC/AAP or the Community Periodontal Index criteria (World Health

Organization, 1997; Page & Eke, 2007). Additionally, cases were also

defined based on probing depth and/or number of deep periodontal

pockets and self-reported clinical diagnosis of periodontitis. More

details regarding the definition of periodontitis adopted in each study

cohort are available in the original publications (D. Shungin

et al., 2015, 2019). Further details of the GWAS studies that were

included in our MR analysis can be found in Table S1.

2.7.3 | Selection of SNPs for MR analysis

SNPs (i.e., the IVs used for the analysis) associated with 25(OH)D,

25(OH)D3, and C3-epi-25(OH)D3 at a genome-wide significance level

(p < 5 � 10�8) were selected for analysis. Among these SNPs, those

with coefficients of linkage disequilibrium (LD) of <1% were selected

based on the European 1000 Genomes dataset as the LD reference

panel. In the next step, SNPs that showed genome-wide association

with periodontitis at a significance level of 1.0 � 10�5 were elimi-

nated. Also excluded were BMI-associated SNPs, as BMI has been

associated with both 25(OH)D metabolite levels and periodontitis risk

(Vimaleswaran et al., 2013; D. Shungin et al., 2015). A detailed flow-

chart of the selection process for SNPs is shown in Figure S2.

The SNPs used as IVs in this study are listed in Table S2. For

25(OH)D, we used 66 common independent SNPs that explain 3.5%

of the phenotypic variation. For 25(OH)D3, seven SNPs together

explained 4.6% of the variance. For C3-epi-25(OH)D3, three SNPs

served as IVs that could explain 2.9% of the variance at the observed

scale. For each instrument, all F statistics were >10 (range, 28.1–

6310.5), with an overall F statistic of 225.9, 279.3, and 403.7 for

25(OH)D, 25(OH)D3, and C3-epi-25(OH)D3, respectively. This indi-

cated that the causal effect estimate was less likely to be affected by

weak instrument bias.

2.7.4 | MR analysis

MR analysis was performed using the R statistical software with the

TwoSampleMR package (Hemani et al., 2018). We investigated the

causal effect of a 1-point standard deviation (SD) increase in the log-

transformed levels of 25(OH)D or 25(OH)D3 on periodontitis predis-

position using several MR approaches. We used the same method to

determine the relationship between genetically predicted high C3-epi-

25(OH)D3 levels (above vs. below the low limit of quantification) with

the risk of periodontitis. We performed principal analyses with

inverse-variance-weighted (IVW) meta-analysis under a fixed-effects

model, which combines the IV ratio estimates across the exposure-

associated SNPs (Burgess et al., 2013). The robustness of the IVW

results was checked with variance heterogeneity tests. The IVW

method provides consistently robust causal effect estimates, provided

the genetic variants meet the assumptions of an IV.

2.8 | Sensitivity analysis

We performed multiple sensitivity analyses to evaluate the extent to

which directional pleiotropy might bias the MR causal estimates. First,

we applied the MR-Egger method, which is based on the Instrument

Strength Independent of Direct Effect assumption. In this method, the

effect of SNPs on 25(OH)D metabolite levels is charted against the

effect of SNPs on periodontitis, and an intercept dissimilar from that

of the source is considered as proof of pleiotropic effects. This

method yields bias-free estimations even if all the selected SNPs are

unfounded (Bowden et al., 2015). Furthermore, we used four more

MR models that are more robust under horizontal pleiotropy condi-

tions: simple mode, weighted mode, weighted median, and penalized

weighted median (Slob & Burgess, 2020). Using median values pro-

vides better robustness than using individual values, which have

strong outlying causal estimates. With median-based analysis, it is

possible to obtain consistent estimates of the causal effect under con-

ditions in which at least 50% of the variants are valid IVs. Under con-

ditions of equal weights, the simple median method is similar to the

weighted median method. The penalized weighted median method is

equivalent to the weighted median method when there is no causal

effect heterogeneity. In the presence of directional pleiotropy, the

contribution of heterogeneous SNP-specific measures to the total

measure is down-weighted by a penalization parameter with the

penalized weighted median method (Bowden et al., 2016). The mode-

based method assumes that the most frequent causal effect is equiva-

lent to the true casual effect. According to this assumption, the rest of

F IGURE 2 Principles of Mendelian
randomization and assumptions that need
to be satisfied to derive unbiased causal
effect estimates.
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TABLE 1 Baseline characteristics of study population in NHANES 2009–2012 and prevalence of periodontitis (weighted) by characteristics

Characteristics Overall (n = 7246) Periodontitis (n = 3625) Healthy controls (n = 3621) p-Value

Age, years 51.5 ± 0.3 54.5 ± 0.4 49.3 ± 0.4 <.001

Gender

Male 3629 (49.0) 2135 (59.0) 1494 (41.4) <.001

Female 3617 (51.0) 1490 (41.0) 2127 (58.6)

Ethnicity

Non-Hispanic White 3201 (69.8) 1326 (61.5) 1875 (76.0) <.001

Non-Hispanic Black 1500 (10.2) 867 (13.3) 633 (8.0)

Mexican American 1024 (7.6) 668 (11.0) 356 (4.9)

Others 1521 (12.4) 764 (14.2) 757 (11.1)

Education

Less than high school 1821 (18.3) 1073 (23.2) 748 (14.5) <.001

High school or equivalent 1560 (20.7) 852 (24.1) 708 (17.9)

College or above 3668 (61.2) 1596 (52.7) 2072 (67.6)

Family income-to-poverty ratio

≤1 1342 (12.3) 772 (16.1) 570 (9.6) <.001

1–3 2740 (35.0) 1500 (41.6) 1240 (30.0)

>3 2538 (52.7) 1010 (42.3) 1528 (60.4)

BMI

<25.0 1907 (27.2) 913 (25.5) 994 (28.5) .060

25.0–30.0 2546 (36.1) 1279 (36.6) 1267 (35.7)

≥30.0 2735 (36.7) 1410 (37.9) 1325 (35.8)

Smoking status

Non-smoker 3919 (54.6) 1779 (47.0) 2140 (60.3) <.001

Former smoker 1911 (27.2) 972 (27.9) 939 (26.7)

Current smoker 1413 (18.2) 871 (25.1) 542 (13.0)

Alcohol consumption

Non-drinker 2214 (26.6) 1180 (29.5) 1034 (24.3) <.001

Moderate drinker 3963 (64.3) 1891 (59.8) 2072 (67.7)

Heavy drinker 506 (9.1) 291 (10.7) 215 (8.0)

Leisure-time physical activity

Low 3938 (48.0) 2131 (55.9) 1807 (42.1) <.001

Moderate 2101 (33.1) 937 (27.8) 1164 (27.1)

Vigorous 1206 (18.9) 556 (16.3) 650 (20.8)

Healthy Eating Index 55.6 ± 0.3 54.4 ± 0.3 56.4 ± 0.5 <.001

Self-reported diseases

Diabetes 973 (9.7) 571 (12.5) 402 (7.6) <.001

Hypertension 2771 (33.6) 1505 (38.0) 1266 (30.2) <.001

Cardiovascular disease 721 (8.0) 403 (10.0) 218 (6.5) <.001

Hypercholesterolemia 2630 (40.2) 1350 (43.3) 1280 (37.9) <.001

Cancer 713 (10.6) 349 (10.5) 364 (10.7) .854

25-Hydroxyvitamin D metabolites

25(OH)D, nmol/L 70.7 ± 1.0 67.2 ± 1.0 73.3 ± 1.2 <.001

25(OH)D3, nmol/L 66.8 ± 1.1 63.5 ± 1.0 69.3 ± 1.3 <.001

C3-epi-25(OH)D3, nmol/L 4.3 ± 0.2 4.1 ± 0.1 4.4 ± 0.2 .042

Note: Data are numbers (percentages) unless otherwise indicated. All estimates accounted for complex survey designs.

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; BMI, body mass index; NHANES, National Health and Nutrition Examination Survey.
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the IVs could be invalid, but they may not result in a bias in the esti-

mated causal effect (Hartwig et al., 2017).

In the second sensitivity analysis, for the levels of total 25(OH)D

and 25(OH)D3, we limited our instrument selection to SNPs in or

close to the genes (DHCR7, CYP2R1, GC, CYP24A1) directly involved

in synthesizing or degrading vitamin D (Figure S3) (Manousaki

et al., 2020). In the third analysis, to further reduce the risk of horizon-

tal pleiotropy, we searched PhenoScanner to check whether these

selected instruments were associated with other diseases or traits

that affect periodontitis susceptibility independent of 25(OH)D

metabolites (Staley et al., 2016). Lastly, we performed MR analysis

using periodontitis-associated SNPs as IVs to determine whether the

associations observed between periodontitis and 25(OH)D metabolite

levels are a result of reverse causality.

We also performed power calculations using Brion's method

(Brion et al., 2013). Based on the sample size of 45,563 individuals

(17,353 cases and 28,210 controls), an alpha level of 0.05, and an

assumed variance of 3.5% explained by the genetic instruments, the

present study had a power of 80% for detecting an effect on peri-

odontitis as small as OR = 1.16 per 1-SD increase in the natural log-

transformed levels of 25(OH)D metabolites.

3 | RESULTS

3.1 | Population characteristics of NHANES

For the given study period (2009–2012), a total of 7246 adults

from the United States with data on exposure (25(OH)D metabo-

lites) and outcome (periodontitis) were eligible for analysis, whose

main characteristics are shown in Table 1. Of these participants,

3625 (50.0%) met the diagnostic criteria for periodontitis according

to CDC/AAP. Compared with the healthy controls, participants

with periodontitis were more likely to be older, male, current

smokers, and obese; had a higher prevalence of cardiometabolic

conditions (hypertension, diabetes, hypercholesterolaemia, and car-

diovascular diseases); and had lower levels of education, family

income, leisure-time physical activity, and healthy eating index. In

addition, the levels of total 25(OH)D, 25(OH)D3, and C3-epi-25

(OH)D3 were significantly lower among participants with periodon-

titis than healthy controls.

3.2 | Association between serum 25(OH)D
metabolites and periodontitis

Table 2 shows the association between serum 25(OH)D metabolites

and the prevalence of periodontitis. In the age-, gender-, and

ethnicity-adjusted model, an inverse relationship was observed

between total 25(OH)D and periodontitis. Each 1-point increase in SD

of the log-transformed levels of 25(OH)D resulted in a 19% decrease

in the risk of periodontitis (95% CI: 0.75–0.88, p < .001, model 1).

After potential confounders, including lifestyle factors, BMI, and

self-reported health conditions, were adjusted for, the results were

not considerably affected. In comparison to the controls who did not

have periodontitis, in participants with periodontitis, the multivariable-

adjusted OR was 0.85 (95% CI: 0.78–0.93, p = .006, model 3). Addi-

tionally, the ORs for periodontitis risk significantly decreased across the

quantile of the 25(OH)D levels (p for trend = .006, model 3). Compared

to the participants in the lowest quantile of 25(OH)D levels, those in

the highest quantile had an OR of 0.63 (95% CI: 0.51–0.78, p = .004,

model 3) after adjusting for multiple confounders. The cubic spline

model indicated a potential non-linear relationship between 25(OH)D

and periodontitis (p for non-linearity = .008, Figure 3a).

The relationship between 25(OH)D3 and periodontitis was similar

to that between 25(OH)D and periodontitis across all three models

(Table 2). Every 1 point increase in the SD of the log-transformed

levels of 25(OH)D3 resulted in a decrease of 12% in the risk of peri-

odontitis (95% CI: 0.80–0.97, p = .031, model 3) in the multivariable-

adjusted model. We also found a statistically significant decline in

ORs across the quantiles of 25(OH)D3 levels (p for trend = .020,

model 3). Moreover, a similar non-linear relationship was observed

between 25(OH)D3 and periodontitis (p for nonlinearity = .019,

Figure 3b). However, no association was found between the C3-epi-

25(OH)D3 levels and periodontitis risk after controlling for potential

confounders (Table 2).

3.3 | MR of 25(OH)D metabolites and periodontitis

We first used the fixed-effects IVW method to pool effect estima-

tions from individual genetic instruments. There was no association

between a 1 point SD increase in the log-transformed levels of

25(OH)D and periodontitis (OR = 1.02, 95% CI: 0.90–1.16,

p = .732). This indicated that there was no proof of a causal relation-

ship between the levels of 25(OH)D and periodontitis risk. Similar

findings were obtained for the association of 25(OH)D3 (OR = 1.04,

95% CI: 0.93–1.17, p = .472) and C3-epi-25(OH)D3 (OR = 1.11,

95% CI: 0.87–1.41, p = .400) with the risk of periodontitis (Figure 4,

Table S3). We also performed a variance heterogeneity test to exam-

ine the robustness of the IVW results, which showed that there was

low proof of heterogeneity (Table S4).

3.4 | Horizontal pleiotropy assessment and
sensitivity analysis

The intercept estimated from MR-Egger regression did not deviate

significantly from zero (Table S4); thus, there was no apparent hori-

zontal pleiotropy. To test for potential bias from horizontal pleiotropy,

several sensitivity analyses were used to investigate the relationship

between the levels of 25(OH)D metabolites and periodontitis. The

estimates were similar to those obtained with the IVW method when

all SNPs were used (Figure 4 and Table S3). The consistent effect

across the multiple methods demonstrated that our results were

robust against bias from horizontal pleiotropy.
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With regard to 25(OH)D and 25(OH)D3, we restricted our MR

instruments to SNPs close to genes that affect vitamin D synthesis

and metabolism directly. A total of eight SNPs for 25(OH)D levels

and four SNPs for 25(OH)D3 levels were detected within or beside

the GC, CYP24A1, CYP2R1, and DHCR7 genes, and explained 2.6%

and 4.2% of the phenotypic variation, respectively. Again, neither

the IVW method nor the five sensitivity analyses indicated a causal

link between 25(OH)D and 25(OH)D3 levels and periodontitis risk

(Table S3).

To alleviate further concerns about horizontal pleiotropy, we

examined whether the selected instruments for the MR analyses were

associated with other phenotypes with the help of PhenoScanner.

We excluded rs11723621/rs4588 (GC gene), rs10832289 (CYP2R1

gene), and rs6127099/rs17216707 (CYP24A1 gene), which are related

to white blood cell count, hip circumference, and glomerular filtration

rate, respectively, at a genome-wide level of significance. Five of the

remaining genetic instruments accounted for 0.9% of the 25(OH)D

variance, and the two remaining variants accounted for 1.2% of the

25(OH)D3 variance. We found that the causal effect estimate

remained largely unchanged, although the CIs had widened further

(Table S3).

We also examined the reverse impact of periodontitis risk on

25(OH)D and 25(OH)D3 levels using periodontitis-related genetic IVs

(Table S5). The causal effect of periodontitis risk was not statistically

F IGURE 3 Association of serum
25(OH)D (a) and 25(OH)D3 (b) with
periodontitis among participants in
NHANES 2009–2012. Odds ratios (ORs)
were adjusted for age, gender, ethnicity,
body mass index, education level, family
income-to-poverty ratio, smoking status,
alcohol consumption, leisure-time physical
activity, healthy eating index, and self-

reported healthy conditions (hypertension,
diabetes, hypercholesterolemia,
cardiovascular disease, and cancer). The
solid line represents ORs, and the shaded
areas represent 95% confidence intervals.
Knots were set at 25th, 50th, and 75th.
The reference values for 25(OH)D and
25(OH)D3 were 10.0 nmol/L (OR = 1.0).
25(OH)D, 25-hydroxyvitamin D; NHANES,
National Health and Nutrition Examination
Survey; OR, odds ratio
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significantly associated with a 1-SD increase in the level of 25(OH)D

(β = �.003, 95% CI: �0.023 to 0.017, p = .787) or 25(OH)D3

(β = �.025, 95% CI: �0.065 to 0.015, p = .223), ruling out the proba-

bility of reverse causation.

4 | DISCUSSION

To the best of our knowledge, the present study is the first to provide a

comprehensive investigation of the association of vitamin D status with

periodontitis risk based on a combination of large-scale observational

study data and MR analysis of large-scale genetic data. We investigated

the association between periodontitis and metabolites of 25(OH)D,

including 25(OH)D3 and C3-epi-25(OH)D3, and their potential causal

relationship. The results showed that total 25(OH)D and 25(OH)D3 had

an inverse association with periodontitis, but C3-epi-25(OH)D3 did not

show any association with periodontitis. We also observed a potential

non-linear relationship between periodontitis and total 25(OH)D and

25(OH)D3. However, in contrast to the observational findings, the

results of the wide-ranging MR study did not support an association

between 25(OH)D or its subtypes with periodontitis risk. Specifically,

increase in these variables was not association with protection against

periodontitis. This lack of evidence for a causal relation was confirmed

by our sensitivity analyses and genetic instrument selection.

The inverse association between total 25(OH)D and periodontitis

observed in the present large-scale study is in line with the results of

numerous other studies (Perayil et al., 2015; Ebersole et al., 2018;

Machado et al., 2020). In the present study, we also observed a poten-

tial non-linear relationship (threshold effect) between periodontitis

and total 25(OH)D. As far as we know, very few studies have reported

this non-linear association before. The non-linear relationship might

explain the inconsistent association of 25(OH)D with periodontitis

reported by previous observational studies. However, in contrast to the

observational findings, our present wide-ranging MR study did not sup-

port the association between 25(OH)D and periodontitis risk. Our

results confirm the recent MR findings that no causal link is present

between 25(OH)D and periodontitis (Baumeister et al., 2021). And the

recent MR study of the causal relationship between vitamin D and peri-

odontitis supports our conclusions (Z. Hu et al., 2022). However, our

analysis provides more solid evidence than the previous study because

our study includes various sensitivity methods to preclude the possibil-

ity of bias from horizontal pleiotropy and uses a bi-directional MR

method to eliminate reverse causality between periodontitis and

25(OH)D concentration. With regard to the variation between the

observational and MR results, adjusting the confounding effects of adi-

posity, diet, and physical activity (with only one inaccurate measure

used to represent these variables) at the baseline may only have moder-

ately decreased their effects on the observational results. Importantly,

MR provides a higher level of evidence; therefore, there was no causal

relationship between 25(OH)D and periodontitis.

Consistent with the results for total 25(OH)D, 25(OH)D3 was also

found to have a reverse correlation and non-linear relationship with

periodontitis, and this is also in agreement with previous studies

(Dietrich et al., 2004; Wang et al., 2019). With regard to the underly-

ing mechanism, 25(OH)D3 may modulate periodontal inflammation

and bone absorption by inhibiting the production of interleukin (IL)-8

and monocyte hemoattractant protein (MCP)-1 (Andrukhov

et al., 2014; Nakashyan et al., 2017). However, contrary to the obser-

vational studies, our MR study (again) showed that there was no

causal relationship between 25(OH)D3 and periodontitis. Thus, our

results further support the previous evidence that there is no causal

relationship between 25(OH)D and periodontitis.

F IGURE 4 Forest plot of the
Mendelian randomization study
investigating the effect of 25(OH)D
metabolites on periodontitis.
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To our knowledge, neither observational studies nor MR studies

have examined the association between periodontitis and C3-epi-25

(OH)D3 (which is an isomer of 25(OH)D3). This is probably because

the epimers of 25(OH)D3 have only recently been detected in human

paediatric and adult populations (Messerlian et al., 2000; Djekic-

Ivankovic et al., 2017). Additionally, the technical difficulties

involved in the measurement of low concentrations of 25(OH)D3

make it difficult to include this variable in large-scale investigations.

Considering the potential involvement of C3-epi-25(OH)D3 in bone

metabolism (Holick et al., 1980; Haddad et al., 1993), it is important

to study the relationship between this 25(OH)D3 isomer and

periodontitis.

However, we found that C3-epi-25(OH)D3 was not associated

with periodontitis in either the observational or the MR studies. Thus,

the findings based on the biochemical measurements of 25(OH)D

metabolites and their genetically predicted concentrations are con-

flicting. Based on the present findings, along with the results of ran-

domized controlled trials, vitamin D supplementation cannot be

recommended for the prevention of periodontitis.

The strengths of the present study are its large sample size, the

inclusion of several 25(OH)D metabolites, and the use of genetic

information as an instrumental variable. Importantly, the MR analysis

allowed the evaluation of the causal link between 25(OH)D metabo-

lites and periodontitis, and this approach is less vulnerable to bias

from reverse causation and confounding compared with traditional

observational studies. There are also several limitations of this study

that should be mentioned. First, in our MR study, we cannot entirely

exclude horizontal pleiotropy, that is, a link between the outcome of

interest and the MR instrument through pathways other than the sug-

gested exposure, which is a typical problem in MR studies and a cause

of bias. However, it should be noted that the MR-Egger intercepts in

the statistical analysis revealed no indication of pleiotropy. A second

limitation is the possibility of a weak instrument bias, especially with

the sensitivity analyses which were limited to smaller genetic instru-

ment sets. Third, as seasons affect the levels of vitamin D (i.e., they

are higher after exposure to sunlight), reducing this effect by calculat-

ing the average effect of 25(OH)D on periodontitis across all seasons

may have influenced the results. Furthermore, MR analysis estimates

the lifetime effect of exposure and not the effect at a specific time.

Therefore, it is not clear whether vitamin D supplementation for pre-

venting periodontitis at a particular time in life for a specific duration

would be useful. Fifth, our observational data indicate a potential

non-linear link between periodontitis and 25(OH)D metabolites. How-

ever, in the MR study, only a linear causal association was examined,

so non-linear causality cannot be ruled out. Additionally, our observa-

tional and genetic data did not originate from the same samples, as

we used a multi-ethnic U.S. population for the cross-sectional study

and individuals of European descent for the MR study. A future study

on a study population of the same ethnicity is needed to preclude

potential confounding factors for population heterogeneity. Finally,

because of differences in allele frequencies and disease or exposure

rates across ancestries, IVs obtained from European populations might

not be present in other populations. Therefore, the generalizability of

the genetic analysis is limited to individuals of European descent. In

the future, these findings need to be confirmed with observational,

experimental, and MR studies on 25(OH)D metabolites in other

populations.

5 | CONCLUSION

In conclusion, our MR study does not indicate a causal link between

periodontitis and genetically defined increased levels of 25(OH)D and

its metabolites, even though the observational studies indicated a

strong association between 25(OH)D, as well as 25(OH)D3, and peri-

odontitis. The observational findings could be biased as a result of

uncontrolled confounders. Therefore, based on the present findings,

there is no indication that vitamin D supplementation may be useful

for the prevention of periodontitis.
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