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a b s t r a c t 

Cephalometric analysis is a fundamental examination which is widely used in orthodontic diagnosis and 

treatment planning. Its key step is to detect the anatomical landmarks in lateral cephalograms, which 

is time-consuming in traditional manual way. To solve this problem, we propose a novel approach with 

a cascaded three-stage convolutional neural networks to predict cephalometric landmarks automatically. 

In the first stage, high-level features of the craniofacial structures are extracted to locate the lateral face 

area which helps to overcome the appearance variations. Next, we process the aligned face area to esti- 

mate the locations of all landmarks simultaneously. At the last stage, each landmark is refined through a 

dedicated network using high-resolution image data around the initial position to achieve more accurate 

result. We evaluate the proposed method on several anatomical landmark datasets and the experimental 

results show that our method achieved competitive performance compared with the other methods. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Cephalometric analysis is a fundamental examination which 

s routinely used in fields of orthodontics and orthognathics 

 Proffit et al., 2006 ). Annotating the landmarks of the dental, skele- 

al, and soft tissue structures from lateral cephalograms is the key 

rocedure in cephalometric analysis, since they serve as the datum 

f the succeeding qualitative assessment of angles and distances 

hich provide diagnosis information of the craniofacial condition 

f a patient and affect treatment planning decision. 

Due to the X-ray imaging quality of the skull and the individual 

ariations of anatomical types ( Lindner et al., 2016 ), it is not 

asy to reliably locate the landmarks in lateral cephalograms 

ithin high precision ( Baumrind and Frantz, 1971 ). Even for an 

xperienced orthodontist, it’s still time-consuming to manually 

dentify the landmarks consistently (intra-observer variations) 

 Durão et al., 2015 ). Moreover, orthodontists with various training 

nd experience backgrounds may result in inconsistent annota- 

ions (inter-observer variations). Therefore, it will be of great value 

o construct an automatic computerized system that identifies 

ephalometric landmarks accurately, consistently and rapidly. 
∗ Corresponding author. 

E-mail address: bdzengmw@163.com (M. Zeng). 
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During the last decades, as technologies develops in computer 

ision and machine learning, lots of approaches were proposed 

o address this issue ( Zhou and Abdel-Mottaleb, 2005; Nikneshan 

t al., 2015; Wang et al., 2016 ). In 2014 and 2015, IEEE Interna-

ional Symposium on Biomedical Imaging (ISBI) Grand Challenges 1 

hat focused on this task were organized ( Wang et al., 2015 ). The

ummarized performance in these challenges showed significant 

mprovement. However, it is still far from the goal of actual clini- 

al practice, since the best accuracy among reported results is only 

bout 73% of the detections fall in the clinically accepted precision 

ange of 2.0 mm ( Payer et al., 2019 ). 

The difficulties in developing a fully automatic cephalometric 

andmark detection system mainly come from two aspects. Firstly, 

he lateral cephalogram is acquired by projecting the skull ob- 

ect into a 2-dimensional gray image with overlapping structures 

 Lindner et al., 2016 ), therefore it is difficult to extract useful image

eatures by hand-crafted approach. Secondly, the overall medical 

maging dataset for training is usually small due to high cost of 

nnotations, so the learned system is vulnerable to overfitting and 

eads to poor performance on test data ( Domingos, 2012 ). Recently, 

onvolutional neural network (CNN) technique has achieved great 

uccess in wide range of computer vision applications, including 

mage classification ( Krizhevsky et al., 2012 ), face recognition 
1 http://www-o.ntust.edu.tw/ ∼cweiwang/ISBI2015/challenge1/index.html . 

https://doi.org/10.1016/j.media.2020.101904
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101904&domain=pdf
mailto:bdzengmw@163.com
http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/challenge1/index.html
https://doi.org/10.1016/j.media.2020.101904
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� : X −→ Y (1) 
 Parkhi et al., 2015 ), object detection ( Ren et al., 2015 ) and image

egmentation ( Ronneberger et al., 2015 ), due to its excellent 

apability to learn useful features from images automatically 

 LeCun et al., 2015 ). Therefore, researchers begin to apply CNN 

n medical image analysis as a promising new tool ( Litjens et al., 

017 ). 

In this paper, we treat cephalometric landmark detection as a 

ulti-level regression problem and propose a novel approach using 

ascaded convolutional neural networks to solve it. The automatic 

rediction pipeline is composed of three stages, following a coarse- 

o-fine detection strategy. The first stage is designed to locate the 

ateral face area in the raw X-ray image. It can be considered as 

n alignment processing to overcome the obvious appearance vari- 

tions among images. Given the lateral face area, the next stage 

ims to predict the coordinates of all landmarks simultaneously, 

hich implicitly encodes the geometric shape constraints among 

andmarks. Due to the high complexity of coordinates regression 

 Pfister et al., 2015 ), it’s hard to predict all landmarks within high

recision range directly. Therefore, in the last stage, each landmark 

s independently refined by a network by processing the high- 

esolution image patch around the initial position to achieve more 

ccurate estimation. This three-stage structure could utilize more 

raining data and help to prevent overfitting problem. To evaluate 

he performance of the proposed approach, we run it on a public 

ataset from IEEE 2015 ISBI Grand Challenge and compare its re- 

ults with the other state-of-the-art approaches. Furthermore, we 

etup additional experiments to visually demonstrate the mech- 

nism of our approach and evaluate its generalization ability to 

ther cephalograms acquired by different equipment and software. 

Generally speaking, the major contributions of this paper 

re summarized as follows: (1) We proposed a novel approach 

ased on cascaded convolutional neural networks to detect 

ephalometric landmark automatically. (2) Extensive experiments 

ere conducted on public datasets and the results showed that 

he proposed method is comparable to other recent methods 

n anatomical landmark detection. (3) We constructed a new 

ephalogram dataset to evaluate the proposed method and publish 

t to the research community. 

The rest of this paper is organized as follows. Section 2 briefly 

utlines the most relevant works in anatomical landmark detec- 

ion. Section 3 describes our approach in detail. Section 4 shows 

he extensive experiments on several anatomical datasets and the 

iscussion of results. Finally, Section 5 concludes this paper. 

. Related work 

In this section, we briefly describe the most representative 

ethods for cephalometric landmark detection problem. 

.1. Traditional approach 

In the last decades, a considerable amount of methods 

or cephalometric landmark detection have been studied. 

rau et al. (2001) proposed a template matching approach which 

dopted the features computed by image edge detection and 

ontour segmentation operators for automated identification of 

andmarks from cephalograms. Forsyth and Davis (1996) demon- 

trated a two-stage approach which firstly detected a candidate set 

f points around the landmarks using rough and fine image fea- 

ures, then exploited the spatial relationships between landmarks 

o find the optimal candidate points. El-Feghi et al. (2004) used 

achine learning methods such as k-means clustering for auto- 

ated cephalometric analysis. 

Since previous studies lacked a public benchmark, 

ang et al. (2015) organized two challenges (IEEE 2014 and 

015 ISBI Grand Challenges) on this task and summarized the 
2 
erformance of the detection methods ( Wang et al., 2016 ). 

bragimov et al. (2015a) used a random forest-based classifier with 

aar-like features ( Ibragimov et al., 2015b ) to model the appear- 

nce of landmarks, then combined the statistical shape represen- 

ation defined by Gaussian kernel estimation ( Ibragimov et al., 

012 ) to achieve the optimal landmark positions by applying 

ame-theoretic optimization framework Ibragimov et al. (2014a,b) . 

indner and Cootes (2015) applied random forest regression- 

oting to predict the likely position of each landmark respectively 

 Lindner et al., 2013; 2015 ), then adopted a statistical shape model 

 Cootes et al., 1995 ) to optimize all landmark positions to ensure 

onsistency across the whole set. 

.2. CNN-based approach 

Recently, despite the limited amount of annotated training im- 

ges in the medical imaging fields, many CNN-based approaches 

ere still proposed to solve anatomical landmark detection prob- 

em successfully. Lee et al. (2017) treated cephalometric landmark 

etection as a regression problem and proposed a single convolu- 

ional neural network to directly learn the positions of all land- 

arks, but it’s difficult to be optimized. Arik et al. (2017) proposed 

 framework that firstly used a convolutional neural network to 

earn the probability whether the input image patch’s center is a 

andmark, for each landmark respectively, then combined with a 

tatistical shape model to refine all landmarks’ optimal positions. 

hang et al. (2017) proposed a two-stage task-oriented deep neu- 

al networks to address the limited availability of medical imag- 

ng data for network learning in anatomical landmark detection. 

rschler et al. (2018) presented a unified framework that com- 

ined both image appearance information and geometric landmark 

onfiguration into a unified random forest framework which was 

ptimized iteratively to refine joint landmark predictions by using 

he coordinate descent algorithm. Payer et al. (2019) proposed a 

ully convolutional SpatialConfiguration-Net (SCN) that dedicated 

ne component to predict locally accurate but ambiguous candi- 

ate landmarks, while the other component improved robustness 

o ambiguities by incorporating the spatial configuration of land- 

arks. 

Despite these previous studies, it is still a challenging task 

o detect cephalometric landmark automatically on small training 

ataset within such high precision that each landmark can be lo- 

ated in the clinically accepted 2.0 mm precision range. 

. Methods 

In this section, we explain the approach how to detect cephalo- 

etric landmarks. 

.1. Formulation 

The cephalometric landmarks used in this study are shown in 

ig. 1 , where 19 types of landmarks ( Wang et al., 2015 ) are anno-

ated to assist cephalometric analysis. The computerized system is 

esigned to predict the positions of all 19 landmarks given the in- 

ut X-ray dental images. To facilitate discussions, the cephalomet- 

ic landmark detection problem is formally described as follows. 

et X ∈ N 

W ×H denote the image set of cephalograms which is in 

ray scale, where W is the image width and H is the image height. 

et Y ∈ R 

2 K denote all landmarks’ coordinates space, where K is 

he number of landmarks, i.e. K = 19 . Given an input image X ∈ X ,

redicting cephalometric landmarks can be considered as learning 

 nonlinear function �, which maps from X ∈ X to coordinate vec- 

or Y ∈ Y, i.e. 
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Fig. 1. The annotation example of the 19 cephalometric landmarks used in this study. The cephalogram is reproduced from image #001 of the IEEE 2015 ISBI Grand Challenge 

dataset. 
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.2. Overall framework 

Since regressing the coordinates directly involves a highly non- 

inear mapping � ( Pfister et al., 2015 ), it’s difficult to optimize ob- 

ective function especially on small training set. Motivated by the 

uccessful application of CNN-based models in facial keypoint de- 

ection task ( Sun et al., 2013; Liu et al., 2015; Zhang et al., 2016 ),

e treat cephalometric landmark detection as a multi-level regres- 

ion problem by decomposing it into three subtasks, instead of 

olving � directly. These three subtasks perform a coarse-to-fine 

redicting procedure and are listed as below, 

• How to align the lateral face area in cephalograms? 
• How to estimate the initial coarse positions of all landmarks? 
• How to refine the position of each landmark within desired 

precision? 

For each subtask, we adopt convolutional neural networks 

o learn the corresponding objective function respectively. The 

nput image of each subsequent network is extracted based on its 

receding network’s output. These learning stages constitute a cas- 

ded prediction pipeline. The overall framework is shown in Fig. 2 . 

Next, we demonstrate the three stages in details. 

.2.1. Alignment stage 

The first stage is designed to locate the lateral face area given 

he input cephalogram and considered as a alignment procedure. 

he similar technique has widely been used in face recognition and 

acial keypoint prediction ( Sun et al., 2013; Taigman et al., 2014 ). 

t’s beneficial for the following landmark detection due to the ex- 

stinghead position variations in cephalograms, and this process 

ould discard the irrelevant image data. We treat this alignment 

ask as a bounding regression problem and proposed a convolu- 

ional neural network called Align-Net to estimate the bounding 

ox of lateral face area. In this paper, lateral face area is defined as 

he minimum enclosing rectangle of all landmarks with a specified 

argin (100 pixels in original image). 

.2.2. Proposal stage 

The lateral face area located in Alignment stage, is extracted as 

he input data in this proposal stage. This stage is designed to yield 
3 
he initial proposal of all landmarks’ positions simultaneously. We 

reated it as a coordinates regression problem and employ a con- 

olutional neural network called Proposal-Net to solve it. The joint 

earning procedure of all landmarks not only utilizes the local im- 

ge features of lateral face area but also implicitly encodes the 

lobal geometric shape constraints among landmarks. 

.2.3. Refinement stage 

Limited by the appearance variations in cephalograms and the 

mall size of training data, it’s hard to predict all landmarks within 

esired high precision by a single model. Furthermore, since the 

nput image is downsampled to small size in previous stages, the 

oss of image details will lead to unwanted detection errors. In or- 

er to improve the predicting precision, for each landmark, we ex- 

ract the image patch surrounding its proposal location in original 

mage and adopt a convolutional neural network called Refine-Net 

o learn the optimal position. Since this image patch is in higher 

esolution than previous networks and retains more details of im- 

ge intensity pattern, it is reasonable to achieve more accurate 

esults. 

.3. Convolutional network architectures 

In this section, we demonstrate the training procedures and 

tructural designs of individual networks used in each stage in 

etail. 

.3.1. Align-Net 

The first network is designed to locate the lateral face area 

iven the raw X-ray dental image. This task is formulated as a 

ounding box regression problem and the learning objective is set 

o minimize the bounding box loss L box which is defined as Eu- 

lidean loss of coordinates of target rectangle box as shown in 

elow, 

 

box = 

∥∥ ˆ y box − y box 
∥∥

2 
(2) 

here ˆ y box ∈ R 

4 is the prediction results obtained from Align- 

et and y box ∈ R 

4 is the groundtruth coordinates. ‖ ·‖ 2 is the Eu- 

lidean norm function. These 4-dimensional coordinates includes 
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Fig. 2. The pipeline of our framework includes three-stage cascaded convolutional neural networks. The input is a raw X-ray dental image. In the first stage, lateral face 

area is located by using Align-Net, which is highlighted by a red rectangle box. In the next stage, initial positions of the 19 landmarks are predicted simultaneously through 

Proposal-Net, which are denoted by blue dots. In the last stage, each landmark is refined by its corresponding Refine-Net based on the image patch (highlighted by the blue 

rectangle box) which is extracted around its initial position respectively. The final landmark prediction results are annotated in the output image denoted by green dots. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The architectures of Align-Net, Coarse-Net and Refine-Net, where “Conv” means convolution, “BN” means batch normalization, “ReLU” means relu (rectified linear 

unit) activation, “MP” means max pooling and “FC” means full connection. The stride size in convolution and pooling is 1 and 2, respectively. The default padding size in 

convolution is 0, except Refine-Net where the padding size is 1. 
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eft-top and right-bottom corners. The main structure of Align-Net 

s composed of two convolutional layers with 5 × 5 filters followed 

y two fully connected layers. The raw X-ray image is scaled to 

4 × 24 size as the input data. The detailed structure is shown in 

ig. 3 (a). 

.3.2. Proposal-Net 

Proposal-Net is the key component of our approach that is de- 

igned to predict the initial proposal of all landmarks’ positions. 
4 
his problem is formulated as a regression problem of all land- 

arks’ coordinates. Similar to the bounding box loss, overall land- 

ark loss L proposal is defined as the Euclidean loss of all landmarks’ 

oordinates as below, 

 

proposal = 

∥∥ ˆ y proposal − y proposal 
∥∥

2 
(3) 

here ˆ y proposal ∈ R 

38 is the estimated coordinates of all landmarks 

nd y proposal ∈ R 

38 is the groundtruth coordinates. Vector y proposal = 
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2 https://figshare.com/s/37ec464af8e81ae6ebbf . 
w 1 , h 1 , w 2 , h 2 , ..., w 19 , h 19 ) and y 
proposal 
i 

= (w i , h i ) is the coordi- 

ates of landmark i . Notice that the coordinates of y proposal is com- 

uted relative to the left-top corner of lateral face box predicted 

y Align-Net. In this network, we use three convolutional layers 

hich filters are respectively 5 × 5 , 5 × 5 and 3 × 3 , followed by

wo fully connected layers. The input image is extracted in original 

mage based on the predicted face area box and scaled to 96 × 96 

ize. The detailed structure is shown in Fig. 3 (b). 

.3.3. Refine-Net 

Following the previous networks, we have achieved the ini- 

ial positions of all landmarks. For each landmark i, we extract a 

quare image patch, the center of whichis set as the initial position 

 

proposal 
i 

with length l patch , then employ the corresponding Refine- 

et to refine the position. This refinement task can be formulated 

s a regression problem. The loss of Refine-Net is defined as the 

uclidean loss over a single landmark as shown in Eq. (4) , 

 

re f ine 
i 

= 

∥∥ ˆ y re f ine 
i 

− y re f ine 
i 

∥∥
2 

(4) 

here ˆ y 
re f ine 
i 

is the i th landmark’s coordinates obtained from 

efine-Net- i and y 
re f ine 
i 

is the groundtruth. Since there is only 

ne landmark, y 
re f ine 
i 

= (w 

′ 
i 
, h ′ 

i 
) ∈ R 

2 . Notice that the coordinates of

 

re f ine 
i 

is computed relative to the left-top corner of the input im- 

ge patch, i.e. w 

′ 
i 
= w i −

l patch 

2 and h ′ 
i 
= h i −

l patch 

2 . In this network, 

e employ three convolutional layers with 3 × 3 filters followed by 

wo fully connected layers to learn the Refine-Net. The input image 

atch is scaled to 48 × 48 size. The detailed structure is shown in 

ig. 3 (c). 

At last, the final position ˆ y i of landmark i can be calculated as 

q. (5) , 

ˆ 
 i = 

ˆ y box 
lt + 

ˆ y proposal 
i 

−
(

l patch 

2 

, 
l patch 

2 

)
+ 

ˆ y re f ine 
i 

(5) 

here ˆ y box 
lt 

is the left-top corner coordinates of bounding box. 

Additionally, several techniques which have been widely used 

n deep learning are also adopted in our CNN models. Batch 

ormalization ( Ioffe and Szegedy, 2015 ) is proposed to mitigate 

he internal covariate shift problem in deep neural networks. 

t normalizes the parameters of input layer in each mini-batch. 

atch normalization is evidently proved to accelerate the train- 

ng procedure and improve the performance of networks. Dropout 

 Srivastava et al., 2014 ) is a regularization technique that is aimed 

o prevent neural networks from overfitting problem. It randomly 

rops certain percentage of neurons of input layer in the training 

rocedure and is able to prevent complex co-adaptations on train- 

ng data. Dropout can be considered as a model averaging strategy 

f neural networks. 

The details of network structure discussed above are shown in 

ig. 3 . 

.4. Data augmentation 

As mentioned in Section 1 , since it’s resource-consuming to ob- 

ain the groundtruth labels of medical imaging data annotated by 

linical experts, the amount of training data in medical image anal- 

sis is usually very small compared with other computer vision 

asks. In order to prevent overfitting problem, the most common 

ay is to artificially enlarge the dataset using label-preserving im- 

ge transformations ( Krizhevsky et al., 2012 ). In this paper, we em- 

loy three types of data augmentation in all the three training 

tages as shown in below, 

• Scale. Change the size of input image by multiplying a scale 

factor f sampled from [0 . 8 , 1 . 1] uniformly. 
S 

5 
• Translation. Translate the input image in both horizontal 

and vertical direction by applying a translation factor f T = 

(�w, �h ) . �w is sampled from [ −w min , W − w max ] in horizon-

tal direction uniformly, where w min is the minimum horizon- 

tal coordinate of all landmarks, w max is the maximum horizon- 

tal coordinate and W is the image width. �h is sampled from 

[ −h min , H − h max ] in vertical direction uniformly, where h min is 

the minimum vertical coordinate of all landmarks, h max is the 

maximum vertical coordinate and H is the image height. 
• Brightness. Sample a brightness coefficient f B uniformly from 

[0 . 7 , 1 . 3] to simulate the variation of brightness. 

Given an original training image X, these augmentation opera- 

ions were applied step by step to generate a new training sample 

 

′ repeatably. 

. Experiments 

.1. Evaluation metrics 

Three classical evaluation metrics in cephalometric radiography 

nalysis are adopted in our experiments, same as in the previous 

tudies ( Wang et al., 2016 ). The definitions of these metrics are 

hown below, 

• Mean radial error (MRE). Given the landmark i in image j, 

the radical error (RE) is defined as the Euclidean distance be- 

tween estimated landmark coordinates ˆ y i = ( ̂  w i , ̂
 h i ) and the 

manual annotated landmark coordinates y i = (w i , h i ) , i.e. RE 
j 
i 

=∥∥ ˆ y i − y 
gt 
i 

∥∥
2 
, where ‖ ·‖ 2 is Euclidean norm function. The mean 

radial error (MRE) for landmark i is defined as shown in Eq. (6) ,

where M is the the number of images. 

MRE i = 

∑ M 

j=1 RE n 
i 

M 

(6) 

The associated standard deviation (SD) is defined as below, 

SD i = 

√ ∑ M 

j=1 (RE j 
i 
− MRE i ) 2 

M 

(7) 

• Success detection rate (SDR). For a detected landmark, if the 

radical error between it and the groundtruth is no greater than 

δmm, it’s considered as a successful detection. The success de- 

tection rate for δ mm is defined as below, 

SDR δ = 

#({ ̂  y i : 
∥∥ ˆ y i − y i 

∥∥
2 

≤ δ} ) 
#(�) 

(8) 

where #(·) is the cardinal function and � is the set of predic- 

tions over all images. 
• Confusion matrix and success classification rate (SCR). Confu- 

sion matrix usually describes the performance of a classification 

model on test data. Success classification rate (SCR) is defined 

as the average diagonal value of confusion matrix. In this pa- 

per, these two metrics are used to evaluate the classifications 

of anatomical types. 

.2. Dataset 

We evaluated the proposed method on a public available 

ephalograms dataset 2 which is used in IEEE 2015 ISBI Grand 

hallenge #1: Automated Detection and Analysis for Diagnosis in 

ephalometric X-ray Image ( Wang et al., 2015 ). The dataset con- 

ains 400 cephalometric X-ray images, which were collected from 

https://figshare.com/s/37ec464af8e81ae6ebbf
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Table 1 

Eight standard clinical measurement methods for classification of anatomical types. 

Method ANB a SNB b SNA c ODI d APDI e FHI f FHA g MW 

h 

Type 1 3 . 2 ◦ − 5 . 7 ◦ 74 . 6 ◦ − 78 . 7 ◦ 79 . 4 ◦ − 83 . 2 ◦ 68 . 4 ◦ − 80 . 5 ◦ 77 . 6 ◦ − 85 . 2 ◦ 0 . 65 − 0 . 75 26 . 8 ◦ − 31 . 4 ◦ 2–4.5 mm 

Type 2 > 5 . 7 ◦ < 74 . 6 ◦ > 83 . 2 ◦ > 80 . 5 ◦ < 77 . 6 ◦ > 0 . 75 > 31 . 4 ◦ = 0 mm 

Type 3 < 3 . 2 ◦ > 78 . 7 ◦ < 79 . 4 ◦ < 68 . 4 ◦ > 85 . 2 ◦ < 0 . 65 < 26 . 8 ◦ < 0 mm 

Type 4 – – – – – – – > 4 . 5 mm 

a ANB: angle between point A (L5), nasion (L2) and point B (L6). 
b SNB: angle between sella (L1), nasion (L2) and point B (L6). 
c SNA: angle between sella (L1), nasion (L2) and point A (L5). 
d ODI (Overbite depth indicator) : arithmetic sum of the angle between the lines L5-L6 and L8-L10, and the angle between the lines L3-L4 

and L17-L18. 
e APDI (Anteroposterior dysplasia indicator) : arithmetic sum of the angle between the lines L3-L4 and L2-L7, the angle between the lines 

L2-L7 and L5-L6, and the angle between the lines L3-L4 and L17-L18. 
f FHI (Facial height index) : ratio of the posterior face height (distance from L1 to L10) to the anterior face height (distance from L2 to 

L8). 
g FMA (Frankfurt mandibular angle) : angle between the lines from sella (L1) to nasion (L2) and from gonion (L10) to gnathion (L9). 
h MW (Modified Wits): ((x L 12 − x L 11 ) / ‖ x L 12 − x L 11 ‖ ) ‖ x L 12 − x L 11 ‖ . 
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00 patients and acquired by Soredex CRANEX@Excel Ceph ma- 

hine (Finland) and Soredex SorCom software (3.1.5, version 2.0) 

 Wang et al., 2015 ). The resolution of image is 2400 × 1935 pix-

ls, while the pixel spacing is 0.1 mm/pixel in each dimension. 

or detection, 19 landmarks were annotated by two experienced 

edical doctors for each image. The groundtruth of landmarks are 

he average of two experts’ annotations. For the classifications of 

natomical types, 8 clinical measurements which is determined by 

he landmark positions are used. The definitions of 8 anatomical 

ypes are shown in Table 1 . The groundtruth anatomical types are 

etermined by the groundtruth landmark positions. Detailed illus- 

rations of 19 landmarks and 8 anatomical types can be found in 

ang et al. (2015) . 

Consistently with previous studies in evaluation, 400 images 

ere split to three pieces: Train dataset (150 images), Test1 dataset 

150 images) and Test2 dataset (100 images). We train on Train 

ataset and evaluate on both Test1 and Test2 datasets. 

.3. Training details 

We trained the proposed models on a server machine with an 

ntel Xeon(R) E5-2678 CPU up to 2.5 GHz and a NVIDIA GTX Titan 

 GPU using cuDNN v8.0. For implementation, we use the Caffe 

ramework ( Jia et al., 2014 ). 

.3.1. Preprocessing 

The train dataset includes 150 images. In the training stage, im- 

ges are augmented using the operations mentioned in Section 3.4 , 

ach image yields 500 augmented samples. Subsequently, pixel val- 

es in each sample are converted from { p ∈ N | 0 ≤ p ≤ 255 } to

 p ′ ∈ R | −1 ≤ p ′ ≤ 1 } as p ′ = 

p−p a v g 
255 , where p a v g = 121 . 78 is the

verage pixel value calculated over Train dataset. 

.3.2. Hyper-parameters 

The batch size in the training procedure is chosen as 256. Ini- 

ial network weights are independently sampled using xaiver pol- 

cy ( He et al., 2015 ). Weight regularization is applied with a weight

ecay coefficient of 0.001. The learning rate is initially chosen 

s 0.001, and step learning policy is used with gamma = 0.95. 

ack-propagation is applied with a momentum coefficient of 0.9. 

hese hyper-parameters are set identically for each network in our 

ramework. In refinement stage, the length l patch of the square im- 

ge patch which center is the position predicted by Proposal-Net is 

et to 200 pixels. The number of solver iterations in each learning 

tage is determined by cross validation that training the network 

n 90% of the training images and using the remaining 10% as a 

alidation set, therefore the training iteration is 80 0,0 0 0 for Align- 

et, 50 0,0 0 0 for Proposal-Net and 50 0,0 0 0 for all Refine-Nets. 
6 
.4. Landmark detection results 

We ran experiments on 250 test images collected from Test1 

nd Test2 datasets. For each test image, the locations of 19 land- 

arks are predicted automatically. Table 2 shows the landmark 

etection results on Test1 dataset and Test2 datasets. The results 

f MRE with SD and SCR for 2.0, 2.5, 3.0 and 4.0 mm ranges are

isted for each individual landmark respectively in details. The av- 

rage MRE of all landmarks on Test1 dataset is 1 . 34 ± 0 . 92 mm.

his value significantly outperforms the previous result 1 . 67 ±
 . 65 mm which was achieved by ( Lindner and Cootes, 2015 ) above 

9.8%, and the average SD is 0.92 mm which is also smaller than 

.65 mm. The average MRE and SD on Test2 dataset is 1 . 64 ±
 . 91 mm, which is still better than previous result 1 . 92 ± 1 . 24 mm

 Lindner and Cootes, 2015 ) about 14.6%. These results proved that 

ur approach could locate cephalometric landmarks more accu- 

ately (smaller MRE) and consistently (smaller SD). 

Besides this, for the clinically accepted precision range of 

.0 mm, i.e. SDR in 2.0 mm, our approach achieved 81.37% accu- 

acy on Test1 dataset and 70.58% accuracy on Test2 dataset. These 

esults are also higher than other published methods ( Wang et al., 

016; Arik et al., 2017 ) as shown in Table 3 . Additionally, our re-

ults are the best in 2.5-, 3.0- and 4.0 mm with significantly im- 

roved compared with previous benchmarks. The SDR in 4.0 mm 

ven reached 97% and 93% on Test1 and Test2 dataset respectively. 

Comparing the results between Test1 and Test2 datasets, we 

ound that the performance on Test1 dataset is consistently bet- 

er than Test2, this means that Test2 dataset is more challenge 

han Test1. In details, the drop of detection performance is mainly 

aused by L6, L13 and L16. The precision of the estimated positions 

f L6, L13 and L16 were much worse on Test2 dataset. Especially, 

he SDR in 2.0 mm of L16 only achieved poor 5% accuracy. Even 

n 4.0 mm group, the SDR of L16 is only 37%. The SDR in 2.0mm

f L13 and L6 are only 13% and 30% respectively. It seems that the 

ata distribution of train dataset is more closer to the distribution 

f Test1 dataset than Test2. 

.4.1. Impact of l patch 

l patch is the only hyper parameter should be set manually of 

ur approach in inference procedure. It is used to extract the im- 

ge patch with size l patch × l patch given a proposal location of land- 

ark in refinement stage. Thus, it’s useful to evaluate the impact 

f the choice of l patch . We ran experiments on Test dataset with 

 patch = 10 0 , 20 0 , 30 0 , 40 0 respectively. The corresponding cumula-

ive distribution of IPE, i.e. IP E j = 

∑ K 
i =1 RE 

j 
i 

K where K is the number 

f landmarks, are shown in Fig. 4 . The results show that the model 

ith l patch = 200 achieved the best performance on this dataset. 
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Table 2 

Landmark detection results in terms of mean radial error (MRE) and successful detection rate (SDR) within 2.0, 2.5, 3.0 and 4.0 mm 

neighborhoods on IEEE 2015 ISBI Grand Challenge Test 1 Dataset. 

ISBI 2015 Challenge Test 1 Dataset ISBI 2015 Challenge Test 2 Dataset 

MRE 

(mm) 

SDR (%) MRE 

(mm) 

SDR (%) 

2.0 mm 2.5 mm 3.0 mm 4.0 mm 2.0 mm 2.5 mm 3.0 mm 4.0 mm 

L1 1 . 04 ± 1 . 23 93.33 95.33 96.00 98.00 0 . 89 ± 0 . 73 95.00 99.00 99.00 99.00 

L2 1 . 25 ± 1 . 02 82.67 90.67 92.67 97.33 1 . 04 ± 0 . 78 91.00 96.00 98.00 99.00 

L3 1 . 30 ± 0 . 80 86.67 93.33 96.67 99.33 2 . 37 ± 0 . 89 35.00 61.00 74.00 97.00 

L4 2 . 02 ± 1 . 25 54.67 68.67 80.67 94.00 2 . 04 ± 2 . 14 73.00 79.00 83.00 86.00 

L5 1 . 74 ± 0 . 99 62.00 74.67 90.00 98.67 1 . 29 ± 0 . 66 85.00 92.00 99.00 100.0 

L6 1 . 35 ± 0 . 76 80.67 91.33 96.67 100.0 2 . 81 ± 1 . 24 30.00 43.00 57.00 80.00 

L7 1 . 33 ± 0 . 94 80.00 90.67 96.67 98.67 1 . 02 ± 1 . 03 91.00 94.00 96.00 97.00 

L8 0 . 95 ± 0 . 87 91.33 95.33 97.33 98.67 1 . 03 ± 0 . 67 93.00 96.00 97.00 100.0 

L9 1 . 01 ± 0 . 79 90.67 97.33 98.67 99.33 0 . 77 ± 0 . 72 97.00 98.00 98.00 99.00 

L10 1 . 97 ± 1 . 10 57.33 72.00 81.33 93.33 1 . 59 ± 1 . 02 69.00 84.00 90.00 98.00 

L11 1 . 07 ± 0 . 77 88.67 95.33 98.67 99.33 1 . 10 ± 0 . 76 90.00 94.00 97.00 98.00 

L12 0 . 96 ± 0 . 61 95.33 96.00 98.00 100.0 0 . 98 ± 0 . 87 92.00 95.00 97.00 98.00 

L13 1 . 63 ± 0 . 83 74.67 92.67 96.00 98.67 2 . 88 ± 0 . 76 13.00 26.00 59.00 93.00 

L14 1 . 21 ± 0 . 72 95.33 98.00 98.00 98.00 2 . 30 ± 0 . 68 38.00 68.00 87.00 95.00 

L15 0 . 95 ± 0 . 81 94.00 96.67 97.33 98.67 0 . 93 ± 0 . 65 91.00 96.00 99.00 100.0 

L16 1 . 52 ± 0 . 99 77.33 88.67 94.00 97.33 4 . 49 ± 1 . 57 5.00 8.00 14.00 37.00 

L17 1 . 01 ± 0 . 77 92.00 96.00 96.67 98.67 0 . 88 ± 0 . 55 95.00 99.00 100.0 100.0 

L18 1 . 39 ± 1 . 09 86.00 87.33 93.33 96.67 1 . 46 ± 0 . 84 72.00 91.00 95.00 98.00 

L19 1 . 83 ± 1 . 21 63.33 72.67 83.33 94.67 1 . 38 ± 0 . 74 86.00 92.00 96.00 99.00 

Average 1.34 ± 0.92 81.37 89.09 93.79 97.86 1.64 ± 0.91 70.58 79.53 86.05 93.32 

Fig. 4. Cumulative distribution of IPE with l patch = 100 , 200, 300 and 400 respectively on ISBI 2015 Test dataset. 
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.5. Pathology classification results 

Based on the classification schemes described in Section 4.2 , 

athological assessment is carried out using the estimated po- 

itions of landmarks by the evaluation program ( Lindner et al., 

016 ). Table 4 shows the confusion matrix for classification of 

natomical types on Test datasets. Table 5 shows the success clas- 
7 
ification rate (SCR), i.e. the diagonal average of confusion matrix 

n Test datasets. The results show that our method achieved the 

est classification accuracy for ANB, APDI, FMA both on Test1 and 

est2 datasets. The average SCR over all anatomical types is 82.76% 

n Test1 dataset and is the best result compared with other meth- 

ds. The average SCR over all anatomical types is 79.27% on Test2 

ataset and is slightly lower than Lindner and Cootes (2015) ’s work 
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Table 3 

Comparison of mean results of success detection rates on ISBI 2015 Challenge 

Test dataset. 

Method 

SDR(%) 

2.0 mm 2.5 mm 3.0 mm 4.0 mm 

Ours 76.82 84.97 90.00 95.58 

SCN Payer et al. (2019) 73.33 78.76 83.24 89.75 

Localization U-Net (2015) 72.15 77.83 82.04 88.80 

Arik et al. (2017) 72.29 78.21 82.24 86.80 

Urschler et al. (2018) ) 70.21 76.95 82.08 89.01 

Lindner and Cootes (2015) 70.65 76.93 82.17 89.85 

Ibragimov et al. (2015a) 68.13 74.63 79.77 86.87 
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80.99%). The drop of this performance is mainly caused by the less 

ccuracy of SNA and FHI. Besides the success classification rate, 

e also exploited the average classification accuracy and achieved 

3.41% and 81.25% on Test1 and Test2 datasets respectively. 

.6. Ablation study 

In this section, we quantitatively analyze the impact of individ- 

al stages in this framework. 

As mentioned in Section 3.2 , Proposal-Net is the bridge con- 

ecting Align-Net and Refine-Net, thus it is kept while we evalu- 

ted the MRE performance without Align-Net and without Refine- 

et respectively. The results are shown in Table 6 . Align-Net could 

mprove the MRE performance by about 7.5%, meanwhile Refine- 

et could improve the performance by about 44.5%. This means 

hat Refine-Net is the key component to achieve predictions within 

igh precision compared with Align-Net. 

Next, we show the cumulative distribution of IPE with Refine- 

et and with Propasal-Net, i.e. without Refine-Net in Fig. 5 . The 

gure shows that Refine-Net improves the cumulative distribution 

f IPE significantly compared to Proposal-Net. 

In order to further investigate how Refine-Net improves the 

rediction precision, for each landmark, we plot a Proposal- 

efinement scatter diagram of MRE. The result is shown in Fig. 6 . 
Table 4 

Confusion matrix for classification of anatomical types on ISBI 

ISBI 2015 Challenge Test 1 Dataset 

Type 1 (%) Type 2 (%) Type 3 (%

ANB Type 1 68.09 8.51 23.40 

Type 2 23.33 76.67 0.00 

Type 3 8.22 0.00 91.78 

SNB Type 1 78.57 7.14 14.29 

Type 2 26.67 73.33 0.00 

Type 3 7.53 0.00 92.47 

SNA Type 1 66.67 14.81 18.52 

Type 2 20.90 77.61 1.49 

Type 3 20.69 10.34 68.97 

ODI Type 1 83.33 1.52 15.15 

Type 2 20.00 80.00 0.00 

Type 3 8.70 0.00 91.30 

APDI Type 1 82.98 8.51 8.51 

Type 2 22.86 77.14 0.00 

Type 3 1.47 0.00 98.53 

FHI Type 1 93.85 0.00 6.15 

Type 2 0.00 100.00 0.00 

Type 3 22.89 0.00 77.11 

FMA Type 1 73.33 3.33 23.33 

Type 2 18.00 82.00 0.00 

Type 3 0.00 0.00 100.00 

MW Type 1 Type 3 Type 4 

Type 1 84.78 8.70 6.52 

Type 3 12.70 87.30 1.59 

Type 4 19.51 0.00 80.49 

8 
or each landmark location L in the figure, the slope of line (0 , L )

epresents the improvement ability of Refine-Net. The lower the 

lope is, the stronger the improvement ability is. The abscissa of 

andmark L represents the proposal quality. We can find that the 

nal prediction precision of a landmark depends on two factors: 

roposal quality and refinement ability. Based on the Proposal- 

efine diagram, we can analyze the reasons of specific landmark’s 

rediction performance. For example, we could find that L16, L13 

nd L4 are the top 3 landmarks with high errors according to 

he vertical axis value in Fig. 6 . The main reason for L16 is that

ts proposal quality is really bad, although its refinement abil- 

ty is rather good. For L13, the main reason is that the refine- 

ent improvement ability is poor, although its proposal is bet- 

er than L4. For L4, the reason is that its proposal quality is 

ad. 

.7. Failure analysis 

In this section, we analyze the failure cases, those with high 

rrors, on ISBI 2015 Test dataset. We selected the top four cases 

#208, #318, #389, #194) with the highest errors in IPE. The pre- 

icted landmark locations including proposal and refinement loca- 

ions are presented on cephalogram in Fig. 7 . The Fig. 7 (a), i.e #208

as the highest error where the landmark L1 and L4 are estimated 

in red color) far away from the groundtruth (in green color). We 

ould find that the proposal quality of L1 and L4 (in blue color) are 

eally bad, this leads to the low precision prediction as discussed 

n Section 4.6 . The other cases are similar with #208. 

.8. Visual interpretation 

Since the experimental results have shown the performance of 

ur approach, it’s important to reveal the underlying mechanism 

f the cascaded networks. In this section, we adopted Grad-CAM 

echnique ( Selvaraju et al., 2017 ) which is proposed to produce 

isual interpretations of CNN-based models. For each network, 

rad-CAM uses gradients of target loss flowing into the last con- 

olutional layer, to generate a localization map highlighting the 
2015 Challenge Test 1 and Test 2 datasets. 

ISBI 2015 Challenge Test 2 Dataset 

) Type 1 (%) Type 2 (%) Type3 (%) 

Type 1 70.00 0.00 30.00 

Type 2 21.43 78.57 0.00 

Type 3 2.38 0.00 97.62 

Type 1 75.86 3.45 20.69 

Type 2 0.00 100.00 0.00 

Type 3 6.78 0.00 93.22 

Type 1 56.10 26.83 17.07 

Type 2 25.00 75.00 0.00 

Type 3 36.84 0.00 63.16 

Type 1 76.92 0.00 23.08 

Type 2 62.50 37.50 0.00 

Type 3 0.00 0.00 100.00 

Type 1 78.57 4.76 16.67 

Type 2 9.09 90.91 0.00 

Type 3 2.78 0.00 97.22 

Type 1 84.44 0.00 15.56 

Type 2 50.00 50.00 0.00 

Type 3 18.87 0.00 81.13 

Type 1 66.67 28.57 4.76 

Type 2 16.18 83.82 0.00 

Type 3 0.00 0.00 100.00 

Type 1 Type 3 Type4 

Type 1 83.33 9.52 7.14 

Type 3 14.29 85.71 0.00 

Type 4 23.33 0.00 76.67 
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Fig. 5. Cumulative distribution of image-specific radical errors of Proposal-Net and Refine-Net on ISBI 2015 Test dataset. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Proposal-Refinement scatter diagram. The horizontal axis is the MRE in mm which is computed using Proposal-Net predictions. The vertical axis is the MRE in mm 

which is computed using Refine-Net predictions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

9 
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Table 5 

Comparison of success classification rate (%) for classification of anatomical types on IEEE 2015 ISBI Grand Challenge Test 1 and Test 2 Datasets. 

ISBI 2015 Challenge Test 1 Dataset ISBI 2015 Challenge Test 2 Dataset 

Ours Arik et al. (2017) Lindner and 

Cootes (2015) Ibragimov et al. (2015a) 

Ours Arik et al. (2017) Lindner and 

Cootes (2015) Ibragimov et al. (2015a) 

ANB 78.84 61.47 64.99 59.42 82.06 77.31 75.83 76.64 

SNB 81.46 70.11 84.52 71.09 89.69 69.81 81.92 75.24 

SNA 71.08 63.57 68.45 59.00 64.75 66.72 77.97 70.24 

ODI 84.88 75.04 84.64 78.04 71.47 72.28 71.26 63.71 

APDI 86.22 82.38 82.14 80.16 88.90 87.18 87.25 79.93 

FHI 90.32 65.92 67.92 58.97 71.86 69.16 90.90 86.74 

FMA 85.11 73.90 75.54 77.03 83.50 78.01 80.66 78.90 

MW 84.19 81.31 82.19 83.94 81.90 77.45 82.11 77.53 

Average 82.76 71.71 76.41 70.84 79.27 74.74 80.99 76.12 

Table 6 

Comparison of MRE with SD and SDR for ablation study of Align-Net and Refine-Net re- 

spectively. 

Method MRE ± SD 

SDR(%) 

2.0 mm 2.5 mm 3.0 mm 4.0 mm 

Ours 1.46 ± 0.92 76.82 84.97 90.00 95.58 

Ours (w/o Align-Net) 1 . 57 ± 1 . 14 75.07 83.03 88.88 94.68 

Ours (w/o Refine-Net) 2 . 11 ± 1 . 30 55.70 68.82 78.46 90.34 

Fig. 7. From left to right, failure cases with the top four IPE are selected from ISBI 2015 Test dataset. Green dots represent the groundtruth of landmarks, blue dots represent 

the landmark locations predicted by Proposal-Net and red dots represent the landmark locations predicted by Refine-Net. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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mportant regions in the image for the corresponding objective 

unction. We randomly selected 4 test images (#190, #232, #302 

nd #314) from Test dataset to visualize Align-Net, Proposal-Net 

nd Refine-Nets respectively as shown in Fig. 8 . Visualization of 

he second convolutional layer in Align-Net are listed in the first 

ow. It’s interesting that the highlight area indicated by heatmap 

olor space is mainly localized near the center of lateral face area. 

isualization of the third convolutional layer of Proposal-Net is 

isted in the second row. The highlighted areas indicate the key 

upporting regions surrounding the lateral face area, including 

he forehead, nose, jaw, and neck spine regions. In refinement 

tage, we selected 4 representative Refine-Nets of landmarks L1, 

2, L8 and L12 to show the visualization which used the third 

onvolutional layer of Refine-Net. We can find that the highlighted 

reas almost cover the most important and obvious image patterns 

round the landmark. These visualization results of each network 

evealed which parts of the image are actually important when 

redicting landmarks using convolutional networks and could help 

s understand how CNNs are applied to cephalometric landmark 
etection. d

10 
.9. Model complexity analysis 

We use #params, i.e. the number of all parameters in a net- 

ork, and FLOPs, i.e. the number of floating-point multiplication- 

dds to represent the model complexity. Our framework consists 

f an Align-Net, a Proposal-Net and 19 Refine-Nets, hence the total 

odel complexity is the sum of these networks. The total com- 

lexity of this framework is about 606.34M flops and 69.11M pa- 

ameters as shown in Table 7 . It is rather lightweight compared 

ith MobileNet ( Howard et al., 2017 ). At inference stage, we ran 

he framework in a server machine in GPU and a normal PC server 

2.5 GHz) in CPU respectively. The Runtime (seconds) results are 

hown in Table 7 . Given a new image, the inference process can be 

ompleted in about 3 seconds which is fast enough compared with 

raditional manual way in clinical practice. 

.10. Validation on additional datasets 

Although the experiments on ISBI 2015 Challenge dataset 

emonstrated the effectiveness of the proposed method, it’s 
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Fig. 8. Grad-CAM visualization demonstration of our cascaded framework, including Align-Net, Proposal-Net and 4 Refine-Nets (L1, L2, L8 and L12). Each sub figure is 

generated by blending raw image with the visualized gradients of the last convolutional layer in the corresponding network pixel by pixel. The gradients are visualized using 

heatmap color space. The red color represents the large gradient trend, while the blue color represents the small gradient trend. For convenience to investigate Refine-Nets, 

we highlight the groundtruth positions of landmarks by green dots in each sub figure. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Table 7 

Complexity analysis of our cascaded convolutional neural net- 

work framework. In the table, M represents million. 

Network # Params FLOPs 

Runtime (s) 

GPU CPU 

Align-Net 0.64 M 5.54 M 0.56 1.04 

Proposal-Net 23.25 M 294.52 M 0.33 0.52 

Refine-Net 2.38 M 16.12 M 0.06 0.08 

Total 69.11 M 606.34 M 2.03 3.08 
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Table 8 

Comparison of mean results of Success Detection Rate (SDR) on PKU 

cephalometric landmark dataset. 

Method MRE ± SD 

SDR (%) 

2.0 mm 2.5 mm 3.0 mm 4.0 mm 

Ours 2 . 02 ± 1 . 89 64.81 73.94 81.73 89.78 
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mportant to evaluate the method’s effectiveness on other cephalo- 

etric or anatomical landmark datasets to validate its generaliza- 

ion ability. 

.10.1. PKU cephalogram dataset 

To quantatively validate the generalization ability of our 

ethod, we constructed a new cephalogram dataset called PKU 

ephalogram dataset and published this dataset 3 to the research 

ommunity. The patients’ data were collected from Fourth Clin- 

cal Division, School and Hospital of Stomatology, Peking Uni- 

ersity. The dataset contains 102 patients’ cephalograms, whose 

ge are from 9 to 53 years. The average resolution size of these 

mages is 2089 × 1937 pixels, while the pixel spacing is about 

.125 mm/pixel. These X-ray images were acquired by Planmeca 

roMax 3D machine (Finland) and Planmeca Romexis software 
3 https://doi.org/10.6084/m9.figshare.13265471.v1 . 

m

t

11 
3.7.0 R). Two senior doctors annotated the 19 cephalometric land- 

arks separately. In this experiment, we directly evaluated the 

revious trained model on the new dataset. The landmark predic- 

ion results are shown in Table 8 . The results show that even with-

ut fine-tuning on the new dataset, the proposed method is still 

ble to predict the landmarks within reasonable errors. 

Additionally, we show the best, median, and worst case sorted 

y IPE in Fig. 9 . For the worst case, Fig. 9 (c), each predicted land-

ark which is in red color has a consistent offset compared to the 

roundtruth. The failure reason probably is that the head scale in 

his cephalogram is obviously different with other case which is 

ot learned precisely by Align-Net. For the best case, Fig. 9 (a), and 

edian case, Fig. 9 (b), the prediction results are rather close to the 

roundtruth. 

.10.2. Hand radiographs dataset 

Although our method is proposed to detect cephalometric land- 

arks, it’s also applicable to other anatomic landmark detection 

asks. In this section, we evaluate the cascaded framework on a 

https://doi.org/10.6084/m9.figshare.13265471.v1
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Fig. 9. Cephalometric landmark detection samples on PKU cephalogram dataset. The green dots represent the groundtruth landmarks and the red dots represent the pre- 

dicted landmarks. #102 is the best case which has the least errors. #52 is the median case. #47 is the worst case which has the most errors. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 9 

Comparison of Median RE, MRE ± SD and Success Detection Rates on Hand radiographs dataset. 

Method Median RE (mm) MRE ± SD (mm) 

O r (%) 

r = 2 mm r = 4 mm r = 10 mm 

Ours 0.45 0 . 77 ± 1 . 14 1921 (5.80%) 271 (0.82%) 42 (0.12%) 

SCN Payer et al. (2019) 0.43 0.66 ± 0.74 1659 (5.01%) 241 (0.73%) 3 (0.01%) 

Localization U-Net (2015) 0.44 0 . 70 ± 2 . 18 1703 (5.14%) 270 (0.82%) 22 (0.07%) 

Lindner and Cootes (2015) ) 0.64 0 . 85 ± 1 . 01 2094 (6.32%) 347 (1.05%) 20 (0.06%) 

Urschler et al. (2018) ) 0.51 0 . 80 ± 0 . 93 2586 (7.81%) 510 (1.54%) 12 (0.04%) 

Štern et al. (2016) ) 0.51 0 . 80 ± 0 . 91 2582 (7.80%) 512 (1.55%) 15 (0.05%) 

Ebner et al. (2014) ) 0.51 0 . 97 ± 2 . 45 2781 (8.40%) 716 (2.16%) 228 (0.69%) 

Payer et al. (2016) ) 0.91 1 . 13 ± 0 . 98 4109 (12.4%) 444 (1.34%) 12 (0.04%) 
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C

ublic available dataset of hand radiographs. 4 This dataset contains 

95 radiographs of left hands. Different from ISBI 2015 cephalo- 

etric dataset, the radiographs were acquired by different X-ray 

canners which results in varying image size and photo quality. 

e use the 37 characteristic landmarks on finger tips and bone 

oints annotated by Payer et al. (2019) . As the images lack informa- 

ion about physical pixel resolution, We adopted the image-specific 

ormalization factor setting proposed in Payer et al. (2019) and 

sed the three folds with equal number of images, resulting in 597 

raining and 298 testing images per fold in our experiments. 

We trained our model on Hand radiographs dataset as de- 

cribed in Section 4.3 . The preprocessing of the input images is the 

ame with Payer et al. (2016) . The results are shown in Table 9 . Al-

hough our method is not the best one (the 3rd place in MRE ± SD 

etric), the gap is not very big. Even in O r metric, the performance 

s comparable to SCN Payer et al. (2019) which is the best method 

n this dataset. This proved that our approach is able to handle 

ther anatomical landmark detection task within high precision. 

. Discussion and conclusion 

In this paper, we proposed a novel approach which is able to 

etect cephalometric landmarks. We evaluated the approach on a 

ublic dataset published by IEEE 2015 ISBI Grand Challenge. The 

roposed approach achieved the least mean radical error (MRE) 

nd the highest success detection rate (SDR) for 2.0 mm precision 

ange, which is considered as the clinically accepted, and also for 

.5-, 3.0- and 4.0 mm ranges. 

Additionally, our approach also achieved significant improve- 

ent in pathology assessment of 8 anatomical types. On Test1 
4 Digital Hand Atlas Database System, www.ipilab.org/BAAweb . 

B

d

12 
ataset, types of ANB, SNA, ODI, APDI, FHI, FMA and MW were 

redicted better than the other methods, while only worse for SNB 

ype. On Test2 dataset, types of ANB, SNB, APDI and FMA were pre- 

icted better than other methods. The results revealed the different 

ata distributions between Test1 and Test2 datasets. Analogously, 

he performance of the published methods on Test1 dataset are 

ll better than Test2. It seems that the data distribution of Test1 

ataset is more consistent with Train dataset, which means that 

est2 dataset is more difficult in this competition. 

Different from the previous methods which usually adopted 

andom forests to vote for positions of each individual landmark 

nd combined a statistical shape model to refine all landmarks’ 

ositions, our approach use three-stage CNN models to consti- 

ute a cascaded pipeline with no more domain-specific priors. The 

xperimental results evidently proved that this cascaded frame- 

ork could predict cephalometric landmarks better than tradi- 

ional ways with small training data. The cascaded structure could 

earn the shape constraints among landmarks implicitly efficiently 

hich comparable to traditional methods which usually employ 

 statistical shape model explicitly. In addition, comparing with 

ther CNN-based approaches, we purely use CNN model to com- 

ose prediction framework. Secondly, we use cascaded CNN mod- 

ls to predict landmarks from coarse to fine. This three-stage cas- 

aded approach could utilize more training image data which helps 

o prevent overfitting problem and extract more useful multi-scale 

eatures of cephalograms than other methods. 

Furthermore, we constructed a new cephalograms dataset 

hich contains 102 patients. The prediction results on this dataset 

how that our approach could be considered as a practical 

NN-based approach for cephalometric landmark detection task. 

eside this, we performed the proposed method on Hand ra- 

iographs dataset to validate the generalization ability. The 

http://www.ipilab.org/BAAweb
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xperimental results show that this approach is comparable to 

ecent anatomical landmark detection methods. 

This work is a good attempt to apply CNN technique to solve 

ephalometric landmark detection. Although it has achieved signif- 

cant performance, there is stillroom for improvement in the future 

ork. For instance, it is not an end-to-end learning framework. The 

ramework consists of 21 individual CNN models which are trained 

espectively. This is inefficient in both training and testing stage. 

t’s attractive to propose an end-to-end convolutional neural net- 

ork to address this detection problem more efficiently. 
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