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1 | BACKGROUND

| Chunhui Sheng | Yongsheng Zhou

Abstract

Oral maxillofacial defects may always lead to complicated hard and soft tissue loss,
including bone, nerve, blood vessels, teeth and skin, which are difficult to restore and
severely influence the life quality of patients. Extracellular vesicles (EVs), including
exosomes, microvesicles and apoptotic bodies, are emerging as potential solutions
for complex tissue regeneration through cell-free therapies. In this review, we high-
light the functional roles of EVs in the regenerative medicine for oral maxillofacial
rehabilitation, specifically bone, skin, blood vessels, peripheral nerve and tooth-re-
lated tissue regeneration. Publications were reviewed by two researchers indepen-
dently basing on three databases (PubMed, MEDLINE and Web of Science), until 31
December 2018. Basing on current researches, we classified the origin of EVs for
regenerative medicine into four categories: related cells in the regenerative niche,
mesenchymal stem cells, immune cells and body fluids. The secretome of different
cells are distinct, while the same cells secrete different EVs under varied conditions;
therefore, the content profiles of EVs and regulatory mechanisms on target cells are
compared and emphasised. By unravelling the regulatory mechanisms of EVs in tissue
regeneration, modified cells and tailored EVs with specific target may be produced

for precision medicine with high efficacy.
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low availability of stem cells harvested from donor tissues, as well

as loss of potency and probable contamination after in vitro expan-

Oral maxillofacial defect is one of the most tackle problems that cli-
nicians should be facing, which always renders to complicated hard
and soft tissue defect, such as bone, soft tissue, nerve, blood ves-
sels and teeth, thus severely influencing the life quality of patients.
Tissue engineering, based on stem cells, has brought hope to the
sufferings by realising the regeneration of a wide range of tissue lost
caused by trauma or diseases. However, with accumulating number
of approved clinical trials on stem-cell therapies, some serious com-
plications happened and considerable limitations have restricted a

wider application of stem-cell therapy.® The first restriction is the

sion. The second consideration is the low efficacy of injected cells,
with growing evidences suggesting that only 1%-3% stem cells fi-
nally maintain or reach the target sites, and a majority may instead
be trapped in the lungs, liver and spleen, while also a large number of
cells ending to apoptosis in a short time after injection.Z'4 Most im-
portantly, some of the injected stem cells lead to tumour formation,
the most severe complication that made us reconsider the safety of
stem-cell therapy.>? Basing on the above unneglectable limitations
of stem-cell therapy, the notion of cell-free therapy has attracted

attentions. We are presently witnessing the emergence of a novel
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paradigm that stem cell contributes to their therapeutic effects
mainly through paracrine activity depending on their secretome,
rather than engraftment or differentiation.’

The cellular secretome is a group of factors, including soluble
proteins, growth factors, cytokines, free nucleic acids, lipids and ex-
tracellular vesicles, secreted to the extracellular space, which plays
a critical role in biological regulation and cell-cell communication.
Conditioned medium (CM), the culture medium containing biologi-
cally active components secreted from previously cultured cells or
tissues that have released into the media substances, represents the
complete milieu of cell-sourced secretomic and vesicular elements.
Extracellular vesicles (EVs), the vesicular elements of the secretome,
are nanoparticles (30-2000 nm) enclosed by phospholipid and con-
tain complex and variable cargo of nucleic acids, proteins and lipids.
Extracellular vesicles can be separated from the soluble factors in
CM by ultracentrifugation, filtration, ion exchange chromatography,
size-exclusion chromatography and polymer precipitation-based
methodologies.®*? The soluble factors and free nucleic acids in
CM are vulnerable and easy to be degraded; on the other hand, the
membrane of EVs protects the component from a fast degradation.
Therefore, EVs are more suitable for storage and transportation for
clinical application compared with conditioned medium, with less
dosage,® smaller volume and longer storage time. Researches on
CM have been started in 1950s, due to their easy isolation methods.
However, EVs had been considered as by-products of cellular me-
tabolism till their biological roles were recognised. The latest decade
has witnessed a booming number of researches on EVs, not only on
their important biological roles, but also improved isolation methods
and elevated yields.

Up till now, EVs have been identified as three different sub-
types, exosomes, microvesicles and apoptotic bodies, classified
by their diameters and biogenesis.'* Exosomes, 30-150 nm in
diameter, are generated within the endoplasmic reticulum and
are released when multivesicular bodies (MVBs) fuse with the
plasma membrane. Exosomes are usually cup-shaped and contain
cytokines and growth factors, signalling lipids, as well as mRNA,
miRNA and non-coding RNAs.'1> Microvesicles (MVs, also known
as shedding vesicles, microparticles and ectosomes) are around
50-1000 nm in diameter. Microvesicles, formed by outward bud-
ding of the plasma membrane, shuttle local cytosolic proteins and
nucleic acids.'® Apoptotic bodies are larger vesicles (50-5000 nm)
released as fragments of dying cells in the late stage of apoptosis,
which contain cell debris, organelles and nuclear particulates as a
result of karyorrhexis.'*'>” EVs not only play important roles in
physiological conditions, but also are effective factors for tissue

repair and regeneration.

2 | OBIJECTIVES

In this review, we aim to summarise the functional roles of cellular
secretome, including CM and EVs, in the regenerative medicine for
oral maxillofacial rehabilitation, specifically bone, skin, blood vessels,

peripheral nerve and tooth-related tissue regeneration, reassuring
the feasibility and efficacy of EVs in tissue regeneration. In addition,
the content profiles and regulatory mechanisms of EVs from various
origins and distinct usages were highlighted, in the service of safety
evaluation and modified EV production.

3 | METHODS

Publications were reviewed by two researchers independently bas-
ing on three databases (PubMed, MEDLINE and Web of Science),
until 31 December 2018. The following keywords were used: (exo-
some OR (extracellular vesicles) OR microvesicles OR (conditioned
medium)) AND (bone OR (blood vessels) OR angiogenesis OR neo-
vascularization OR (skin healing) OR (wound healing) OR nerve OR
(neural regeneration) OR (tooth regeneration) OR (dental pulp re-
generation)). Titles and abstracts were reviewed by two researchers,
respectively. And then, the full texts of the selected articles were
further checked to make sure for inclusion. Reference tracking of
the above included articles was also performed, and then, related

reference articles were included.

4 | RESULTS

By summarising the functions of EVs in different tissue regeneration,
we found the origin of EVs for regenerative medicine mainly fall into
four categories (Figure 1): (a) related cells in the regenerative niche,
such as bone marrow-derived stem cells (BMMSCs), osteoblast for
bone regeneration; fibroblasts, keratinocytes and fibrocytes for skin
regeneration; endothelial cells (ECs) and endothelial progenitor cells
(EPCs) for angiogenesis; Schwann cells, neural stem cells for nerve
regeneration; (b) mesenchymal stem cells(MSCs), such as bone mar-
row mesenchymal stem cells (BMMSCs), adipose-derived stem cells
(ASCs), induced pluripotent stem cell (iPSC)-derived mesenchymal
stem cells (iPSC-MSCs) and umbilical cord MSCs (ucMSCs); (c) im-
mune cells, such as dendritic cells, monocytes and macrophages; (d)
body fluids, such as platelet-rich plasma (PRP), and human umbilical
cord blood (UCB). The secretome of different cells are distinct, while
the same cells secrete different EVs under varied conditions. By un-
ravelling the regulatory mechanisms of EVs in different and complex
tissue regeneration, modified cells and EVs can be produced for pre-

cision medicine with high efficacy.

4.1 | EVsinbone regeneration

Oral and maxillofacial bone loss is a challenging clinical problem
due to the complex morphology of maxilla and mandible, difficul-
ties in functional bone regeneration for teeth prosthesis or im-
plantation, and challenges in vascularisation and neurotisation of
regenerated bone. New bone formation or osteogenesis can be di-
vided into two processes, intramembranous ossification and endo-

chondral ossification. The former one depends on differentiation
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FIGURE 1 Overview of EV origins
for different tissue regeneration in oral
maxillofacial region. ASCs, adipose-
derived stem cells; BMMSCs, bone
marrow mesenchymal stem cells; ECs,
endothelial cells; EPCs, endothelial
progenitor cells; EVs, extracellular
vesicles; Exos, exosomes; iPSC-MSCs,
induced pluripotent stem cell (iPSC)-
derived mesenchymal stem cells;

MVs, microvesicles; OECs, olfactory
ensheathing cells; ucMSCs, umbilical cord
MSCs [Colour figure can be viewed at
wileyonlinelibrary.com]
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of MSCs into osteoblasts, which is the case in oral maxillofacial
region, and the latter one leads to the longitudinal growth of long
bones. Bone regeneration involves in complex processes of bone
remodelling, which requires cooperation among BMMSCs, osteo-
blasts, osteoclasts, osteocytes and chondrocytes to maintain the
balance of bone metabolism. Apart from bone-related cells, im-
mune cells and endothelial cells (ECs) also contribute to bone re-
modelling. For example, ECs are involved in osteoblast maturation
and angiogenesis. Immune cells, such as dendritic cells (DCs), T
cells, monocytes, and macrophages, also participate in the process
of bone remodelling.

Bone-related cells, including BMMSCs, osteoblast progenitors,
and osteoblasts, contribute to an effective group of secretome
to promote bone regeneration (Figure 2A, Table 1). Exogenous
BMMSC-EVs can be internalised by endogenous BMMSCs or osteo-
blasts into the Golgi apparatus,'® and “turn on” the differentiation of
endogenous BM MSCs'?2° and osteoblasts®® or rescue the function
of BMMSCs in diseased states.?*?® Exosomes from BMMSCs with or
without osteogenic induction can both promote osteogenic differ-
entiation of BMMSCs and osteoblasts.?>2* There are no statistical
difference between EVs and CM from BMMSCs without osteogenic
induction, but classical osteoinduction medium (OM) is still better in
promoting osteogenic differentiation.'® Besides abundant evidence
in vitro, BMMSC-derived EVs indeed facilitate angiogenesis and
bone regeneration in vivo when used with bone scaffolds.8:1%22:24-26
On the other hand, osteoblast progenitors or osteoblasts can, in turn,
regulate the differentiation of BMMSCs via paracrine effects. For
example, differentiated osteoblast progenitors (MC3T3-E1 cells) se-
crete exosomes to promote osteogenic differentiation of BMMSCs

by activating Wnt signalling.?’
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MicroRNAs are important composition of EV cargos that con-
tribute to their osteogenic capability.” MiR-196a, miR-27a and
miR-206 are highly enriched in human bone marrow stromal cell
(BMSC)-derived EVs, and miR-196a is verified to be a critical fac-
tor regulating osteogenic differentiation.® MiR-21-5p, miR-4454,
miR-125b-5p and miR-4532 are also highly expressed in human
BMSC-derived exosomes, but bone-repair-related proteins (SDF-1,
MCP-1 and MCP-3) are lower in BMSC exosomes.?? MiR-199b,
miR-218, miR-148a, miR-135b and miR-221 are also reported to
be enriched in hBMSC exosomes.?® Mouse BMMSC exosomal
miR-151-5p promotes osteogenic differentiation of BMMSCs in
systematic sclerosis mice by inhibiting IL4Rx expression, thus down-
regulating mTOR pathway.?® MiR-3084-3p, miR-680, miR-677-3p,
miR-5100 and miR-5100 are highly expressed in EVs from differen-
tiated mouse osteogenic progenitors (MC3T3-E1 cells), and among
the upregulated microRNAs, five upregulated miRNAs (miR-667-3p,
miR-6769b-5p, miR-7044-5p, miR-7668-3p and miR-874-3p) co-tar-
get Axinl to activate the Wnt signalling pathway by inhibiting Axin1
expression and increasing p-catenin expression.?’ To maintain the
balance of bone remodelling, there are also EVs that carry inhibitors
for osteogenesis. Osteoclast-derived exosomal miR-214-3p inhibits
bone formation by targeting osteoblasts.?’ Another study showed
that EVs from osteoclast precursors promote osteoclastogenesis
of mouse marrow haematopoietic precursors, whereas EVs from
osteoclasts reduced osteoclast formation instead.’® Meanwhile,
EVs derived from the bone marrow interstitial fluid of aged mice
can inhibit the osteogenic differentiation of young BMSCs through
miR-183-5p by targeting heme oxygenase-1 (Hmox1), a factor sen-
sitive to oxidative stress and promoting osteoblastic differentiation

of BMSCs.3! Osteocyte-derived exosomal miR-218, which is related
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FIGURE 2 Network of interactions via EVs in bone regeneration, skin and wound healing, neovascularisation and nerve regeneration.

A, Network of crosstalk among bone-related cells, mesenchymal stem cells and immune cells in bone regeneration; B, network of
interactions among skin-related cells, mesenchymal stem cells and body fluids for skin and wound healing; C, network of interactions among
vascular-related cells, mesenchymal stem cells, immune cells and body fluids for neovascularisation; D, crosstalk among nerve-related

cells, mesenchymal stem cells and immune cells for nerve repair and regeneration. AGWJ of HUC, acellular Wharton's jelly (AGW)) of the
human umbilical cord (HUC); ASCs, adipose-derived stem cells; BMMSCs, bone marrow mesenchymal stem cells; EVs, extracellular vesicles;
GMSCs, gingival mesenchymal stem cells; iPSC-MSCs, induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells; Ol, osteogenic
induction; PDLSCs, periodontal-ligament stem cells; PRP, platelet-rich plasma; UCB, umbilical cord blood; ucMSCs, umbilical cord MSCs
[Colour figure can be viewed at wileyonlinelibrary.com]
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LV ET AL.

to muscle-bone communication, is found to inhibit osteogenic dif-
ferentiation of osteoblast progenitors by targeting Wnt signalling
molecules (TCF7 and SOST). *2

Besides BMMSCs, other mesenchymal stem cells, such as ASCs,
ucMSCs and iPSC-MSCs, can also secrete abundant EVs, providing
wide choices for cell-free bone regeneration. Adipose-derived stem
cells, obtained from discarded adipose tissue from liposuction, enjoy
the advantages of full abundance and little side effects to donors and
are promising cell sources for bone regeneration.33 Exosomes from
human adipose-derived stem cells (hASCs) promote osteogenic dif-
ferentiation of hBMMSCs and facilitate cell-free bone regeneration
in vivo.>* Meanwhile, tooth-derived MSCs also consist a potential
group of origins of EVs for osteogenesis. For example, EVs derived
from human periodontal-ligament stem cells (\PDLSCs)®> and human
gingival mesenchymal stem cells (hGMSCs)®® with cell-free scaf-
folds can also effectively improve healing of calvaria bone defects.
Moreover, exosomes from hiPSC-MSCs accelerate osteogenic dif-
ferentiation of BMSCs from ovariectomised (OVX) rat and facilitate
bone regeneration in critical-sized calvarial defects by enhancing an-
giogenesis and osteogenesis.®” Mechanically, hiPSC-MSC exosomes
activate PI3K-Akt pathway in BMSCs, leading to higher expression
of pro-osteogenic genes (PDGFA, FGF1/2, FGFR1, COL1A1/2 and
BCL2L1), and a decrease in the negative effector genes [glyco-
gen synthase kinase 3p (GSK3p), phosphatase and tensin homolog
(PTEN)].® Human placenta MSC (PlaMSC)-derived exosomes influ-
ence the differentiation competence of normal adult human dermal
fibroblasts (NHDF) to both osteoblastic and adipocyte differentia-
tion by increasing the expression of stemness-related genes mRNA,
OCT4 and NANOG.?’ Exosomes from human umbilical cord-derived
mesenchymal stem cells (hucMSCs) can promote osteogenic differ-
entiation of BMSCs, but the in vivo bone-repair effect was examined
under the existence of BMSCs.*°

Inflammation is recognised as a double-edged sword for bone
regeneration, with constant communications between immune
cells and bone-related cells. Extracellular vesicles from BMMSCs
may attenuate inflammatory responses by modulating maturation,
apoptosis and proliferation of T cells.***? In turn, EVs from immune
cells, such as DCs, can be internalised by BMMSCs to promote their
recruitment, homing and osteogenic differentiation.*® Meanwhile,
activated monocytes can also contribute to bone regeneration.
Exosomes and CM from lipopolysaccharide (LPS)-stimulated human
monocytes are found to promote osteogenic differentiation of
BMMSCs.**

4.2 | EVsin skin and wound healing

Skin restoration without scar or little scar is important for oral maxil-
lofacial region. How to accelerate wound healing and reduce scar
formation are two major obstacles for soft tissue regeneration and
skin healing. The process of wound healing includes four stages:
coagulation or haemostasis, inflammation, cellular migration and
proliferation, and tissue remodelling.*>*’ During cellular prolifera-
tive phase, fibroblasts differentiate into contractile myofibroblasts

PSR\ LEY
expressing a-smooth muscle actin (a-SMA) mediated by the TGF-8
signalling pathway,*® whereas myofibroblast aggregations lead to
excessive scar formation. Therefore, factors that promote fibroblast
migration and proliferation will accelerate wound healing, while
methods to inhibit excessive myofibroblastic differentiation are po-
tential to reduce scar formation.

In the first place, skin-and-epithelial-related cells are important
origin of EVs for skin regeneration (Table 2, Figure 2B). Exosomes
from fibrocytes, containing HSP-90a«, total and activated STATS3,
proangiogenic microRNAs (miR-126, miR-130a, miR-132), anti-in-
flammatory microRNAs (miR124a, miR-125b) and miR-21 (regu-
lating collagen deposition), promote tube formation of endothelial
cells (ECs) and the proliferation of diabetic dermal fibroblasts, thus
accelerating wound closure in diabetic mice.*” Microvesicles from
human keratinocytes activate ERK1/2, JNK, Smad, and p38 signal-
ling pathways in fibroblasts, decreasing cadherin-2 expression and
reducing a-SMA mRNA expression, alleviating the process of my-
ofibroblast differentiation.>® Although excessive myofibroblasts
are unexpected, they are also needed in the balanced process of
wound healing, since MVs from myofibroblasts benefit angiogene-
sis in skin regeneration.51 Exosomes from human amniotic epithelial
cells (hAECs) are also reported to promote fibroblast proliferation
and migration, and shorten the healing time and narrow the scars
in full-thickness skin wounds of SD rats.’> The RNA component of
exosomes plays a critical role in this process, since exosomes with
RNase A lose the ability to facilitate wound healing compared with
exosomes or exosomes with proteinase K.53

Extracellular vesicles derived from MSCs are also promising can-
didates for skin regeneration. Exosomes from hucMSCs delivered
Wnt4 to activate B-catenin nuclear trans-location and activity, and
activated AKT pathway to enhance proliferation and migration of
keratinocytes.’® More importantly, exosomes from hucMSCs sup-
press myofibroblast aggregation via microRNAs (miR-21, miR-23a,
miR-125b and miR-145) to inhibit excess aSMA and collagen deposi-
tion by regulating TGF3/SMAD?2 signalling pathway to minimise scar
formation.*® Extracellular vesicles from ASCs are considered better
than EVs from BMMSCs in wound healing.”® Extracellular vesicles
from hASCs promote fibroblasts migration, proliferation and col-
lagen synthesis 56 by increasing the level of p-Akt/Akt to activate
PI3K/Akt signalling pathway.’” hASC-derived exosomes contain In-
cRNA MALAT1, which is essential to stimulate fibroblast migration
and angiogenesis involved in wound healing.’® Meanwhile, MSCs
can be stimulated or modified to secrete tailored EVs to meet certain
clinical requirements, such as inflammatory status under diabetic
conditions. For example, exosomes from hASCs overexpressing Nrf2
inhibited ROS and inflammatory cytokine expression and accelerate
cutaneous wound healing of rat diabetic foot ulcers.>? Synovium
mesenchymal stem cells (SMSCs) overexpressing miR-126-3p ac-
celerated re-epithelialisation, activated angiogenesis and pro-
moted collagen maturity in full-thickness skin defect in a diabetic
rat model.®° Moreover, exosomes from hiPSCs®! or hiPSC-MSCs®?
promote vessel formation, accelerate cutaneous wound healing and

reduce scar widths in the process of skin and wound healing. These
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LV ET AL.

(Continued)

TABLE 2

Kind of

Mechanisms Ref.

In vivo effect

In vitro effect

Content profile

Dose

secretome

Cell Origin

Hu®?

miR-21-3p, highly enriched in

The local transplantation of

UCB-Exos could promote the prolifera-

miR-21-3p

100 pg/mL Exos

Exos

human um-

UCB-Exos into mouse skin UCB-Exos, promoted angio-

tion and migration of fibroblasts, and
enhance the angiogenic activities of

endothelial cells

(200 pg/wellin a 6-
well plate)

bilical cord

genesis and fibroblast function
through inhibition of phos-

wounds resulted in accelerated
re-epithelialisation, reduced
scar widths, and enhanced

angiogenesis

blood (UCB)

phatase and tensin homolog

(PTEN) and sprouty homolog 1

(SPRY1)

Bakhtyar®

a2M was highly expressed in

AGWIJ-Exos with matrigel en-

AGWIJ-Exos promoted fibroblasts vi-

o2M

AGWJ of HUC Exos

AGWIJ-Exos, and enhanced cell

hanced skin wound healing on
the back of C57/BL6 mice

ability and cell migration

proliferation, migration and cell

viability

Abbreviations: AGWJ of HUC, acellular Wharton's jelly (AGWJ) of the human umbilical cord (HUC); CM, conditioned medium; ECs, endothelial cells; EV, extracellular vesicle; Exo, exosome; GMSCs, gingi-

val mesenchymal stem cells; hAECs, human amniotic epithelial cells; hASCs, human adipose-derived stem cells; hREPCs, human endothelial progenitor cells; HGF, hepatocyte growth factor; hiPSC-MSCs,

human induced pluripotent stem cell-derived mesenchymal stem cells; HSP, heat shock protein; hucMSCs, human umbilical cord MSCs; IGF, insulin-like growth factor; iPSCs, induced pluripotent stem
cells; MSCs, mesenchymal stem cells; NGF, nerve growth factor; PRP, platelet-rich plasma; SDF, stromal-derived growth factor; SMSCs, Synovium mesenchymal stem cells; STAT, signal transducer and

activator of transcription; TGF, transforming growth factor; a2M, alpha-2-macroglobulin; «aSMA, a-smooth muscle actin.

PSR\ LEY-
findings suggest that EVs from MSCs could potentially minimise scar
tissue formation and promote skin tissue regeneration by facilitating
vascularisation in the wound sites.

Exosomes derived from various body fluids can also accelerate
wound healing. PRP-derived exosomes not only accelerate prolifer-
ation and migration of fibroblasts to stimulate re-epithelialisation,
but also promote proliferation and migration of ECs to improve an-
giogenesis, thus benefiting wound healing.*¢* Mechanically, PRP
exosomes promote fibroblast proliferation and migration through
YAP activation.®® In addition, human umbilical cord blood (UCB)
exosomes can also promote the proliferation and migration of fi-
broblasts, as well as exerting proangiogenic effects on ECs through
miR-21-3p which inhibit PTEN and sprouty homolog 1 (SPRY1).%
Exosomes derived from acellular Wharton's jelly (AGW)J) of the
human umbilical cord promote fibroblasts viability and cell migra-
tion and accelerate wound healing through alpha-2-macroglobulin
(a2M).66

4.3 | EVsin neovascularisation

Angiogenesis is well recognised to be essential in various tissue re-
generative processes, including bone regeneration, skin and wound
healing, and nerve regeneration. Just as bone remodelling and
wound healing, vascularisation is also a dynamic and balanced pro-
cess basing on communications between vascular endothelial cells
(ECs) and their surrounding environment. During this angiogenic
process, EC proliferation, migration and tube formation are the basis
of new blood vessel formation.

Extracellular vesicles released by ECs and endothelial progen-
itor cells (EPCs) have been documented as effective mediators of
neovascularisation (Figure 2C, Table 3). Microvesicles (MVs) or
shedding vesicles from ECs, containing proenzyme forms of matrix
metalloproteinases, including matrix metalloproteinase-2 (MMP-2)
and MMP-9, promote the formation of capillary-like structures by
other ECs. Extracellular factors, such as serum, FGF2 and VEGF,
help to stimulate the shedding of MMPs as vesicle components.®’
Extracellular vesicles generated by ECs under interleukin-3 (IL3)
stimulation promote vascularisation via the delivery of miR-126-3p
and pSTAT5 into the recipient ECs thus activating Erk1/2 signalling.68
Meanwhile, EPCs, a group of progenitor cells that play in important
role in postnatal neovascularisation, have higher angiogenic poten-
tial compared with mature ECs. Therefore, EVs derived from EPCs
have been recognised as potent regulators for neovascularisation.
Hypoxic EPC-conditioned medium (CM), highly enriched in angioge-
netic factors (angiogenin, PDGF-BB and VEGF-A), is as effective as
EPC-based cell therapy for tissue revascularisation and muscle func-
tion.®” Microvesicles of EPCs were reported to contain microRNAs
(MiR-126, miR-296)"%"* and mRNAs (MAPKAPK2, eNOS, BCL-XL,
CTNNB1),’? and can be internalised by ECs via integrins a4 and p1
on the surface of EPC-derived MVs. EPC-derived MVs stimulate EC
proliferation and new blood vessel formation by activation of the
PI3K-Akt and eNOS signalling pathways in ECs mainly depending
on their RNA component.”%’? Meanwhile, exosomes from EPCs
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mediate their angiogenic effects by activating Erk1/2 signalling in

9 vascular ECs, leading to upregulation of VEGFA, VEGFR-2, ANG-1,
- ?‘Eu 2 FGF-1, E-selectin, CXCL-16, eNOS and IL-8 in ECs.”>7° Therefore,
@ ©
;“:_’ s S § 5 CM, MVs and exosomes from EPCs all have the capacity to stimulate
o~ blood vessel formation, while the angiogenic effects of EVs mainly
. % g depend on their RNA component, as verified by EVs with RNAase
< :QC_), _% _g showed significantly decreased activity in angiogenesis.
LE L & § Mesenchymal stem cells (MSCs)also secrete EVs as important
o B [\] '
© § %' % mediators to interact with ECs and EPCs to regulate angiogenesis.
e R (9]
P 3w > = MSCs have potent proangiogenic properties attributed to their se-
w0 = E ‘@ =
§ s -2 g 'E cretion of paracrine factors, and the functionality of the MSC se-
= SRCERC] ©
_E E 3 .'é" 3 § cretome is strongly influenced by the microenvironment, such as
o oo U w |
g é S5 | g. c .%f hypoxia, inflammation or other chemical inducers. Conditioned me-
- dium from MSCs on hypoxia stimulation is angiogenic by increasing
- 4:-)’» the level of p-Akt and pERK in ECs, activating PI3K-Akt pathway with
< 2 :% minimal effect on pSTAT3.7%’”7 Extracellular vesicles from BMMSCs
£ ; . . .
o o i% Q § carry proangiogenic proteins related to PDGF, EGF and FGF, and
o
g;’ 2 2 ; gc)n promote neovascularisation and restrain the inflammation response
- § E E % ’DQ,, of ECs through NFkB signalling and the transfer of transcriptionally
[ ‘0 4+ S
e =5 & 2782 2 active STAT3.257880 Exosomes derived from ASCs are also shown
8 % kS 5 % E % ‘003 to promote angiogenesis in vitro and in vivo, due to the delivery of
2 EE <£w®5s £ '
; [<IRe] g <5 | o miR-125a targeting 5-like 4 (DLL4), an angiogenic inhibitor.®! PDGF
- o o

treatment changes EV protein composition, with an enrichment of
c-kit, SCF (stem-cell factor), and metalloprotease content to stim-

Abbreviations: ECs, endothelial cells; EGF, epidermal growth factor; EPCs, endothelial progenitor cells; ERK, extracellular signal-regulated kinase; FGF, fibroblast growth factor; hEPCs, human endothelial
progenitor cells; hucMSCs, human umbilical cord mesenchymal stem cells; HUVECs, Human umbilical vein endothelial cells; MCP, monocyte chemoattractant protein; MIG, monokine induced by IFN-v;

MIP, macrophage inflammatory protein; PDGF, platelet-derived growth factor; PlaMSCs, human placenta-derived mesenchymal stem cells; SCID mice, severe combined immunodeficient mice; SDF,

£ 5 %
20 ) o o
_§ .% Ty © % ulate angiogenesis more effectively.2? ASCs cultured in endothelial
G _§ E E :‘é ﬁ differentiation medium tend to release more MVs with proangio-
.é 8 g % % 2 'g genic properties by shuttling miR-31 to inhibit HIF-10..%% Small RNAs
E c § “2 § EL é rj? take the majority (77.8%) of the composition of EVs compared with
g % 2 .% E “EJ ‘% E ASCs (7.5%). EVs from ucMSCs are also proangiogenic. Similarly with
2 9 g -LE g 5 g S g BMMSCs and ASCs, hypoxia stimulates MV secretion of hucMSCs
% :qc’j E = o _"‘c" E s _"‘c" g o with greater quantity and increased level of proangiogenic factors,
o g 3 5 :‘é % g g % *é % including angiogenin, VEGF and IGF.248> Exosomes released from
E g .§ § -r% § _§ '%D E § § hucMSCs promote angiogenesis by transferring Wnt4 and activating
G Wnt4/p-Catenin pathway in ECs.8® Akt-overexpressing hucMSCs se-
° § crete exosomes carrying platelet-derived growth factor-D (PDGF-D),
E g another key protein composition in EVs to stimulate angiogenesis.®”
‘5’ E g E Extracellular vesicles derived from immune cells also actively
‘g 8 o s participate in vascular homeostasis. Microvesicles from monocytes
O = zéo carry miR-150 to inhibit c-Myb in ECs, thus facilitating the prolif-
5 | % eration and migration of ECs in vitro and angiogenesis in vivo.88
=z ) E E- Moreover, platelet MVs isolated from healthy donors are proangio-
= ; é’i g genic via delivery of cytokines, such as VEGF, FGF-2 and PDGF, to
%ﬂ 'o:g o % activate PI3 kinase, src kinase and ERK.®’
v Zo 15 £
8§ 8% S 3
. % 4.4 | EVsin peripheral nerve regeneration
:qi ;5’ *z-; " " " %-_ Peripheral nerve injury in oral maxillofacial region as results of tu-
.g <3 L% L% 2 § § 4§ mour or trauma, leading to partial or complete sensory and motor
@ . g “.qc: nerve dysfunction, severely influences the life quality of patients.
- . g ) % § % However, current therapies have re;r(])ained limited and unsatisfied
3 c § § 3 Q b E § ;i because of poor funcFlo.naI recoveryf, Usually, larger neurologic de-
[ = S % .%0 % g é 5 g fects are extremely difficult to repair, because the axons of neurons
.‘.‘ © £ e e 2 5 can only outgrow about 1 mm per day after injury.91 Although tissue
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(Continued)

TABLE 4

Kind of

Mechanisms Ref.

In vivo effect

In vitro effect

Content profile

secretome

Origin

Hao''®

Regulated energy metabolism by

Reduced damages of cortical neurons

CcM

hASCs

increasing the levels of GAP-43,
ATP, NAD*, NADH and the ratio
of NAD*/NADH expression

Raisi®>®

Rest-MSC MVs and anti-inflam-

MVs

Rat ASCs

matory-MSC MVs improved the
nerve regeneration compared
with pro-inflammatory-MVs

Bucan''?

Enhanced regeneration after

Increased neurite outgrowth

GDNF, FGF-1, BDNF,

Exos

Rat ASCs

sciatic nerve injury

IGF-1 and NGF
transcripts
miR-223

LV ET AL.

Zhan?’

Increased SCs infiltration and

Improved SCs migration and proliferation; up-

MVs

M2 Macrophage

axon number in sciatic nerve

injury rats

regulated NGF and laminin

Abbreviations: BDNF, brain-derived neurotrophic factor; Ch-SCs, Chorion MSCs; FGF, fibroblast growth factor; GDNF, glial cell-derived neurotrophic factor; HGF, hepatocyte growth factor; IGF, insulin-

like growth factor; IGF, insulin-like growth factor; MenSCs, menstrual MSCs; NTAK, neural- and thymus-derived activator for ErbB kinases, also known as neuregulin-2 (NRG2); olfactory ensheathing

cells (OECs); SCs, Schwann cells; TGF, transforming growth factor; VEGF, vascular endothelial growth factor.

engineering techniques for peripheral nerve regeneration are easier
to be accepted for the patients compared with autologous nerve
grafting, the outcomes are still suboptimal. Recently, it has been
recognised that exosomes play critical regulatory functions during
nerve repair, with accumulating evidences indicating that exosomal
miRNAs are critical for nerve regeneration. Cellular secretome, in-
cluding CM and exosomes, from Schwann cells,”>%8 olfactory en-
sheathing cells (OECs),”*?¢ M2 macrophages’’ and MSCs,”® has
been considered to be beneficial for peripheral nerve regeneration
(Figure 2D, Table 4).

Schwann cells (SCs), divided into myelinating type and non-my-
elinating type, dedifferentiate to a progenitor-like state, provide nu-
trition to support axon outgrowth, and guide axons to their original
target tissues after peripheral nerve injury. Direct cell contact and
soluble factors from paracrine effect contribute to the interactions
between SCs and neurons during axonal regeneration.99 Schwann
cell proliferation, migration and axon myelination post-injury can
be regulated by microRNAs, and microRNA Let-7,2%° miR-sc3,1%!
miR-1%°2 and miR-340'°® were reported to benefit this process.
Meanwhile, SCs themselves can also deliver microRNAs by EVs
to other SCs and neurons to improve the peripheral nerve repair.
Schwann cell microRNA expression is drastically altered after pe-
ripheral nerve injury, and many injury-regulated SC microRNAs, such
as miR-221 and miR-222 cluster (miR-221/222), facilitate prolifera-
tion and migration of SCs.1%* Conditioned medium or exosomes from
SCs and noncontact co-culture of SCs with neurons promote dorsal
root ganglia (DRG) neurite outgrowth by secretion of nerve growth
factor (NGF),”>?° and local injection of SC exosomes effectively
drives axon growth after nerve crush injury.”>1% Together, the con-
tent profile of SCs changed after injury, and microRNAs delivered
by SC EVs are important mediators of SCs’ regenerative response
following nerve injury. However, existing researches are based on
rat SCs. To obtain human SC exosomes, the necessity of harvesting
SCs via sacrifice of normal nerve tissue has remained to be a major
disadvantage for their clinical application.

Besides low regenerative rate of axons, inflammatory reactions
and degenerative debris after peripheral nerve injury turn to be an-
other obstacle for nerve regeneration, which always block the elon-
gation of regenerating axons to reach their target sites. Macrophages
play a critical role in modulating the inflammatory responses. The
moment nerve damage occurs, damaged myelin will activate the
macrophages to release pro-inflammation cytokines, thus mediat-
ing the removal of debris from apoptotic axons and myelins through
macrophage phagocytosis, and also accelerate the recruitment and
migration of other macrophages at the injury site.}%¢ Meanwhile,
M2 macrophages were reported to secrete MVs highly expressing
miR-223 to improve migration and proliferation of SCs and increase
the expression level of NGF and laminin, thus promoting peripheral
nerve repair in sciatic nerve injury rats.”’

MSCs and their secretome are well recognised to improve func-
tional recovery following nerve injury,91'98 MSCs from various origins,
such as menstrual MSCs (MenSCs), BMMSCs, ASCs and ucMSCs,
have been reported to benefit the survival and neurite outgrowth of
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neurons. BMMSCs secretome have been attracted the most atten-
tions in the field of nerve regeneration. CM from BMMSCs contains
various trophic factors, such as transforming growth factors p1 (TGF-
1), vascular endothelial growth factor (VEGF), insulin-like growth
factor (IGF) and hepatocyte growth factor (HGF). 1°71%¢ BMMSC CM
and EVs protect neurons from apoptosis, promote neurite outgrowth,
attenuate inflammations and exert proangiogenic effect, leading to
improved recovery of neurological function.'°®'2 Exosomes derived
from BMMSCs delivered miRNA-17-92 cluster to promote axonal
growth of cortical neurons and facilitate functional recovery after
stroke by activating the PTEN/mTOR!3 and PI3K/PKB!* signalling.
MiR-133b is also highly expressed in BMMSC-derived exosomes, and
miR-133b target and inhibit connective tissue growth factor (CTGF)
and RhoA to improve neurite remodelling and functional recovery.**®
Tailored exosomes from BMMSCs overexpressing miR-133b de-
crease neuronal apoptosis and neurodegeneration, as well as exert a
secondary release of neurite-promoting exosomes from astrocytes,
through inhibition of RhoA expression and enhancement of ERK1/2/
CREB phosphorylation.}'*'%¢ |n addition, CM from ASCs, enriched in
CXCL5, can also promote neurite growth, reduced neuron damage by
regulating energy metabolism, and activate JAK/STAT signalling in a
concentration-dependent manner in Schwann cells.**”118 Exosomes
from ASCs are found to shuttle transcripts of glial cell-derived neu-
rotrophic factor (GDNF), fibroblast growth factor-1(FGF-1), brain-de-
rived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1)
and NGF to promote nerve regeneration after sciatic nerve injury.119
When comparing different MSCs on nerve regeneration, menstrual-
MSC exosomes show best effects on cortical neurons and have a com-
parable effect to BMMSC exosomes on DRG neurons compared with
chorion MSCs and hucMSCs. Interestingly, the direct contact of MSCs
with neurons inhibits neurite outgrowth, but CM from MSCs promotes
growth of neurons. Exosomes from menstrual MSCs enhance neurite
outgrowth, but MVs inhibit this effect on the contrary.105 Therefore,
the paracrine factors from MSCs may provide a neurogenic niche
more importantly than the cells themselves, and trophic factors in CM
and microRNAs in exosomes play critical roles in nerve regeneration
by protecting neurons from degradation, attenuating inflammatory re-

sponses, facilitating angiogenesis and promoting axonal growth.

4.5 | EVsin tooth-related tissue regeneration

Tooth itself is such a complex organ which consists of hard tissues
(enamel, dentin and cementum) and soft tissues (dental pulp with
blood vessels and nerves, and periodontal ligament), that genuine
tooth regeneration is considerably challenging. The process of tooth
development may provide us information for realising tooth regen-
eration. Tooth development is precisely controlled by the crosstalk
between epithelium and mesenchyme, and exosomes have been doc-
umented to play an important role in this process.'?%'2! Extracellular
vesicles derived from dental-related cells are preferential choices for
tooth regeneration. Exosomes from hDPSCs cultured under odon-
togenic differentiation conditions promote odontogenic differen-
tiation of recipient hDPSCs and hBMSCs through activation of P38

49
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mitogen-activated protein kinase (MAPK) pathway.??> Conditioned
medium from odontoblast promotes differentiation and mineralisa-
tion of cementoblasts.'?® Schwann cells in dental pulp secrete EVs

to maintain the multipotency of hDPSCs, 124125

suggesting that nerv-
ous system may also play an important role in tooth regeneration.
In turn, exosomes from human exfoliated deciduous teeth (SHEDs)
protect neurons from apoptosis and have neurogenic capabilities.*?¢
Furthermore, MSCs from other tissue may also be potential candi-
dates for tooth regeneration. Adipose-derived stem cells could be

127

induced to cementoblasts,” =’ while CM from BMSCs promotes peri-

odontal tissue regeneration.'?®

4.6 | Perspectives and challenges

In the first place, the safety of EV local injection and systematic
administration should be systematically evaluated. Therefore, EV
biodistribution and clearance dynamics, content profiles and regu-
latory mechanisms are two essential indexes for safety evaluation.
Extracellular vesicle labelling and tracking techniques are the bases
for studies on biodistribution of EVs, and fluorescent reporter sys-

129131 magnetic labelling observed by MRI**2!3 and radiola-

tems,
belling observed by SPECT/CT'* have been reported. Basing on
existing researches, EV biodistribution depends on the cellular origin
of EV, as well as dose, method and location of administration. 3113
Meanwhile, the half-life time for exogenous EVs in vivo is around
30 minutes.'® After intravenous injection via tail vein in the mice,
EVs are detected to undergo a rapid distribution phase in the spleen,
followed by the liver, and then the lungs and kidneys. Extracellular
vesicles are eliminated through liver and kidney within six hours,
albeit a very small percentage (~0.01% of total dose) of EVs are
detected in brain, heart and muscles.'?’ Moreover, intraperitoneal
and subcutaneous injection significantly lowers the amount of EVs
in liver and spleen, whereas increases the accumulation in pancreas
and gastrointestinal tract.'®* Therefore, a criterion for the optimal
route of EV delivery targeting different regenerative or therapeutic
goals is urgently to be established in order to enhance the thera-
peutic efficacy of EVs. Moreover, no matter which kind of reporter
system we choose, there is a risk that the signals originate from the
free label itself, rather than the labelled EVs; therefore, control ex-
periments using the label itself should also be analysed and tracking
methods with less false-positive signals are expected.

Also basing on safety considerations, the content profiles and
regulatory mechanisms of EVs should be systematically evaluated
before its clinical application. The horizontal transfer of genetic in-
formation by EVs within and even across species boundaries'3¢1%”
may risk uncontrolled transfer of genetic information among indi-
viduals or across species. Therefore, a rigorous, overall and genome-
wide detection of all genetic elements (non-coding RNAs, mRNAs,
etc) shuttled within candidate exosomes has become a prerequisite
before clinical application.

In addition, the effectiveness of EV-based therapy is expected
to be studied systematically. Although accumulating evidences

have supported the efficacy and advantages of EV therapies, the
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comparison between EV and traditionally well-recognised efficient
methods should be conducted. For example, in the field of tissue
engineering, the regenerative effects of EVs and stem cells are ex-
pected to be systematically compared, but difficult to realise due to
lack of studies and the heterogeneity between researches.

Finally, tailored EVs, either bioengineered or generated from
modified cells, are promising selections for precision medicine. To
realise this goal, unravelling the composition of EVs and their un-
derlying regulatory mechanisms is indispensable. Moreover, devel-
opment in biomaterial science and nanotechnology may provide us a
bright future for bioengineered EVs.

5 | CONCLUSION

Extracellular vesicles are effective and beneficial for various tissue
regeneration, including bone, skin, blood vessels and nerve, thus
contributing to their promising roles in oral rehabilitation. Whether
EVs can be a total surrogate for stem-cell therapy should be evalu-
ated carefully by more systematic studies for comparison. Tailored
or bioengineered EVs with higher safety and efficiency are expected

in the foreseeable clinical application.

ACKNOWLEDGMENTS

This work is supported by the grant (31600787) from the National
Natural Science Foundation of China, the grant (7192228, L182006)
from the Beijing Natural Science Foundation, the Project for
Culturing Leading Talents in Scientific and Technological Innovation
of Beijing (Z171100001117169), the grant of Young Elite Scientist
Sponsorship Program by CAST (China Association for Science and
Technology) (2015QNRCO001), and the grant from the PKU School
of Stomatology for Talented Young Investigators (PKUSS20150107).

CONFLICT OF INTEREST

The authors report no conflicts of interest in this work.

ORCID

Longwei Lv https://orcid.org/0000-0002-2912-1530
Yongsheng Zhou https://orcid.org/0000-0002-4332-0878
REFERENCES

1. Soteriou D, Fuchs Y. A matter of life and death: stem cell survival
in tissue regeneration and tumour formation. Nat Rev Cancer.
2018;18(3):187-201.

2. Fischer UM, Harting MT, Jimenez F, et al. Pulmonary passage is a
major obstacle for intravenous stem cell delivery: the pulmonary
first-pass effect. Stem Cells Dev. 2009;18(5):683-692.

3. Kraitchman DL, Tatsumi M, Gilson WD, et al. Dynamic imaging of
allogeneic mesenchymal stem cells trafficking to myocardial in-
farction. Circulation. 2005;112(10):1451-1461.

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24,

Toma C, Wagner WR, Bowry S, Schwartz A, Villanueva F. Fate of
culture-expanded mesenchymal stem cells in the microvascula-
ture: in vivo observations of cell kinetics. Circ Res. 2009;104(3):
398-402.

Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues
of stem cell-based therapy. Int J Med Sci. 2018;15(1):36-45.
Prokhorova TA, Harkness LM, Frandsen U, et al. Teratoma forma-
tion by human embryonic stem cells is site dependentand enhanced
by the presence of Matrigel. Stem Cells Dev. 2009;18(1):47-54.
Fontaine MJ, Shih H, Schafer R, Pittenger MF. Unraveling the
mesenchymal stromal cells' paracrine immunomodulatory effects.
Transfus Med Rev. 2016;30(1):37-43.

Kim DK, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ.
Chromatographically isolated CD63+CD81+ extracellular vesicles
from mesenchymal stromal cells rescue cognitive impairments
after TBI. Proc Natl Acad Sci USA. 2016;113(1):170-175.
Kenigsberg S, Wyse BA, Librach CL, da Silveira JC. Protocol for
exosome isolation from small volume of ovarian follicular fluid:
evaluation of ultracentrifugation and commercial kits. Methods
Mol Biol. 2017;1660:321-341.

Marques-Garcia F, Isidoro-Garcia M. Protocols for exosome isola-
tion and RNA profiling. Methods Mol Biol. 2016;1434:153-167.

Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation
techniques. Theranostics. 2017;7(3):789-804.

Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for
exosome isolation and characterization: evaluation of ultracentrif-
ugation, density-gradient separation, and immunoaffinity capture
methods. Methods Mol Biol. 2015;1295:179-209.

Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC re-
duces myocardial ischemia/reperfusion injury. Stem cell Res.
2010;4(3):214-222.

Azoidis I, Cox SC, Davies OG. The role of extracellular vesicles in
biomineralisation: current perspective and application in regener-
ative medicine. J Tissue Eng. 2018;9:2041731418810130.

van Niel G, D'Angelo G, Raposo G. Shedding light on the cell bi-
ology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):
213-228.

Camussi G, Deregibus MC, Cantaluppi V. Role of stem-cell-derived
microvesicles in the paracrine action of stem cells. Biochem Soc
Trans. 2013;41(1):283-287.

Liu M, Sun Y, Zhang Q. Emerging role of extracellular vesicles in
bone remodeling. J Dent Res. 2018;97(8):859-868.

Qin Y, Wang L, Gao Z, Chen G, Zhang C. Bone marrow stromal/
stem cell-derived extracellular vesicles regulate osteoblast activity
and differentiation in vitro and promote bone regeneration in vivo.
Sci Rep. 2016;6:21961.

Xie H, Wang Z, Zhang L, et al. Extracellular vesicle-functionalized
decalcified bone matrix scaffolds with enhanced pro-angiogenic
and pro-bone regeneration activities. Sci Rep. 2017;7:45622.
Martins M, Ribeiro D, Martins A, Reis RL, Neves NM. Extracellular
vesicles derived from osteogenically induced human bone marrow
mesenchymal stem cells can modulate lineage commitment. Stem
Cell Rep. 2016;6(3):284-291.

Liu S, Liu D, Chen C, et al. MSC transplantation improves osteope-
nia via epigenetic regulation of notch signaling in lupus. Cell Metab.
2015;22(4):606-618.

Furuta T, Miyaki S, Ishitobi H, et al. Mesenchymal stem cell-de-
rived exosomes promote fracture healing in a mouse model. Stem
Cells Transl Med. 2016;5(12):1620-1630.

Chen C, Wang D, Moshaverinia A, et al. Mesenchymal stem cell
transplantation in tight-skin mice identifies miR-151-5p as a thera-
peutic target for systemic sclerosis. Cell Res. 2017;27(4):559-577.
Narayanan R, Huang CC, Ravindran S. Hijacking the cellular mail:
exosome mediated differentiation of mesenchymal stem cells.
Stem Cells Int. 2016;2016:3808674.


https://orcid.org/0000-0002-2912-1530
https://orcid.org/0000-0002-2912-1530
https://orcid.org/0000-0002-4332-0878
https://orcid.org/0000-0002-4332-0878

LV ET AL.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Xie H,WangZ, ZhangL, et al. Development of an angiogenesis-pro-
moting microvesicle-alginate-polycaprolactone composite graft
for bone tissue engineering applications. PeerJ). 2016;4:e2040.
Zhao M, Li P, Xu H, et al. Dexamethasone-activated MSCs re-
lease MVs for stimulating osteogenic response. Stem Cells Int.
2018;2018:7231739.

Cui Y, Luan J, Li H, Zhou X, Han J. Exosomes derived from min-
eralizing osteoblasts promote ST2 cell osteogenic differentiation
by alteration of microRNA expression. FEBS Lett. 2016;590(1):
185-192.

Xu JF, Yang GH, Pan XH, et al. Altered microRNA expression
profile in exosomes during osteogenic differentiation of human
bone marrow-derived mesenchymal stem cells. PLoS ONE.
2014;9(12):e114627.

Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p
inhibits osteoblastic bone formation. Nat Commun. 2016;7:10872.
Huynh N, VonMoss L, Smith D, et al. Characterization of reg-
ulatory extracellular vesicles from osteoclasts. J Dent Res.
2016;95(6):673-679.

Davis C, Dukes A, Drewry M, et al. MicroRNA-183-5p increases
with age in bone-derived extracellular vesicles, suppresses bone
marrow stromal (stem) cell proliferation, and induces stem cell se-
nescence. Tissue Eng Part A. 2017;23(21-22):1231-1240.

Qin Y, Peng Y, Zhao W, et al. Myostatin inhibits osteoblastic
differentiation by suppressing osteocyte-derived exosomal mi-
croRNA-218: a novel mechanism in muscle-bone communication.
J Biol Chem. 2017;292(26):11021-11033.

Lv L, Liu'Y, Zhang P, et al. The nanoscale geometry of TiO, nano-
tubes influences the osteogenic differentiation of human ad-
ipose-derived stem cells by modulating H3K4 trimethylation.
Biomaterials. 2015;39:193-205.

Li W, Liu Y, Zhang P, et al. Tissue-engineered bone immobilized
with human adipose stem cells-derived exosomes promotes bone
regeneration. ACS Appl Mater Interf. 2018;10(6):5240-5254.
Diomede F, D'Aurora M, Gugliandolo A, et al. Anovel role in skeletal
segment regeneration of extracellular vesicles released from peri-
odontal-ligament stem cells. Int J Nanomed. 2018;13:3805-3825.
Diomede F, Gugliandolo A, Cardelli P, et al. Three-dimensional
printed PLA scaffold and human gingival stem cell-derived extra-
cellular vesicles: a new tool for bone defect repair. Stem Cell Res
Ther. 2018;9(1):104.

Qi X, Zhang J, Yuan H, et al. Exosomes secreted by human-induced
pluripotent stem cell-derived mesenchymal stem cells repair criti-
cal-sized bone defects through enhanced angiogenesis and osteo-
genesis in osteoporotic rats. Int J Biol Sci. 2016;12(7):836-849.
Zhang J, Liu X, Li H, et al. Exosomes/tricalcium phosphate combi-
nation scaffolds can enhance bone regeneration by activating the
PI3K/Akt signaling pathway. Stem Cell Res Ther. 2016;7(1):136.
Tooi M, Komaki M, Morioka C, et al. Placenta mesenchymal stem
cell derived exosomes confer plasticity on fibroblasts. J Cell
Biochem. 2016;117(7):1658-1670.

Wang KX, Xu LL, Rui YF, et al. The effects of secretion factors
from umbilical cord derived mesenchymal stem cells on osteo-
genic differentiation of mesenchymal stem cells. PLoS ONE.
2015;10(3):e0120593.

Del Fattore A, Luciano R, Pascucci L, et al. Inmunoregulatory ef-
fects of mesenchymal stem cell-derived extracellular vesicles on T
lymphocytes. Cell Transplant. 2015;24(12):2615-2627.

Chen W, Huang Y, Han J, et al. Immunomodulatory effects of
mesenchymal stromal cells-derived exosome. Immunol Res.
2016;64(4):831-840.

Silva AM, Almeida MI, Teixeira JH, et al. Dendritic cell-derived
extracellular vesicles mediate mesenchymal stem/stromal cell re-
cruitment. Sci Rep. 2017;7(1):1667.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

51
EETEE V1 EY-
Ekstrom K, Omar O, Graneli C, Wang X, Vazirisani F, Thomsen P.
Monocyte exosomes stimulate the osteogenic gene expression of
mesenchymal stem cells. PLoS ONE. 2013;8(9):e75227.
Rani S, Ritter T. The exosome - a naturally secreted nanopar-
ticle and its application to wound healing. Adv Mater.
2016;28(27):5542-5552.
Cabral J,Ryan AE, Griffin MD, Ritter T. Extracellular vesiclesas mod-
ulators of wound healing. Adv Drug Deliv Rev. 2018;129:394-406.
Golchin A, Hosseinzadeh S, Ardeshirylajimi A. The exosomes re-
leased from different cell types and their effects in wound healing.
J Cell Biochem. 2018;119(7):5043-5052.
Fang S, Xu C, Zhang Y, et al. Umbilical cord-derived mesenchymal
stem cell-derived exosomal microRNAs suppress myofibroblast
differentiation by inhibiting the transforming growth factor-beta/
SMAD?2 pathway during wound healing. Stem Cells Transl Med.
2016;5(10):1425-1439.
Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes
accelerate wound healing in genetically diabetic mice. Biochem
Biophys Res Comm. 2015;467(2):303-309.
Huang P, Bi J, Owen GR, et al. Keratinocyte microvesicles regu-
late the expression of multiple genes in dermal fibroblasts. J Invest
Dermatol. 2015;135(12):3051-3059.
Merjaneh M, Langlois A, Larochelle S, Cloutier CB, Ricard-Blum S,
Moulin VJ. Pro-angiogenic capacities of microvesicles produced by
skin wound myofibroblasts. Angiogenesis. 2017;20(3):385-398.
Zhao B, Zhang Y, Han S, et al. Exosomes derived from human am-
niotic epithelial cells accelerate wound healing and inhibit scar for-
mation. J Mol Histol. 2017;48(2):121-132.
Zhao B, Li X, Shi X, et al. Exosomal microRNAs derived from
human amniotic epithelial cells accelerate wound healing by pro-
moting the proliferation and migration of fibroblasts. Stem Cells Int.
2018;2018:5420463.
Zhang B, Wang M, Gong A, et al. HucMSC-exosome mediated-
Wnt4 signaling is required for cutaneous wound healing. Stem
Cells. 2015;33(7):2158-2168.
Pelizzo G, Avanzini MA, Icaro Cornaglia A, et al. Extracellular
vesicles derived from mesenchymal cells: perspective treat-
ment for cutaneous wound healing in pediatrics. Regen Med.
2018;13(4):385-394.
Hu L, Wang J, Zhou X, et al. Exosomes derived from human ad-
ipose mensenchymal stem cells accelerates cutaneous wound
healing via optimizing the characteristics of fibroblasts. Sci Rep.
2016;6:32993.
Zhang W, Bai X, Zhao B, et al. Cell-free therapy based on adipose
tissue stem cell-derived exosomes promotes wound healing via the
PI3K/Akt signaling pathway. Exp Cell Res. 2018;370(2):333-342.
Cooper DR, Wang C, Patel R, et al. Human adipose-derived stem
cell conditioned media and exosomes containing MALAT1 pro-
mote human dermal fibroblast migration and ischemic wound
healing. Adv Wound Care. 2018;7(9):299-308.
Li X, Xie X, Lian W, et al. Exosomes from adipose-derived stem
cells overexpressing Nrf2 accelerate cutaneous wound healing by
promoting vascularization in a diabetic foot ulcer rat model. Exp
Mol Med. 2018;50(4):29.
Tao SC, Guo SC, Li M, Ke QF, Guo YP, Zhang CQ. Chitosan wound
dressings incorporating exosomes derived from microRNA-126-
overexpressing synovium mesenchymal stem cells provide sus-
tained release of exosomes and heal full-thickness skin defects in
a diabetic rat model. Stem Cells Transl Med. 2017;6(3):736-747.
Kobayashi H, Ebisawa K, Kambe M, et al. Editors' Choice Effects of
exosomes derived from the induced pluripotent stem cells on skin
wound healing. Nagoya J Med Sci. 2018;80(2):141-153.
Zhang J, Guan J, Niu X, et al. Exosomes released from human in-
duced pluripotent stem cells-derived MSCs facilitate cutaneous



2
2 L wiLEy-

63.
64.
65.
66.
67.

68.

69.

70.

71.
72.
73.
74.
75.

76.

77.

78.

LV ET AL.

wound healing by promoting collagen synthesis and angiogenesis.
J Transl Med. 2015;13:49.

Guo SC, Tao SC, Yin WJ, Qi X, Yuan T, Zhang CQ. Exosomes de-
rived from platelet-rich plasma promote the re-epithelization of
chronic cutaneous wounds via activation of YAP in a diabetic rat
model. Theranostics. 2017;7(1):81-96.

Xu N, Wang L, Guan J, et al. Wound healing effects of a Curcuma
zedoaria polysaccharide with platelet-rich plasma exosomes as-
sembled on chitosan/silk hydrogel sponge in a diabetic rat model.
Int J Biol Macromol. 2018;117:102-107.

Hu'Y, Rao SS, Wang ZX, et al. Exosomes from human umbilical cord
blood accelerate cutaneous wound healing through miR-21-3p-
mediated promotion of angiogenesis and fibroblast function.
Theranostics. 2018;8(1):169-184.

Bakhtyar N, Jeschke MG, Herer E, Sheikholeslam M, Amini-Nik
S. Exosomes from acellular Wharton's jelly of the human um-
bilical cord promotes skin wound healing. Stem Cell Res Ther.
2018;9(1):193.

Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo
V. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and
MT1-MMP as membrane vesicle-associated components by endo-
thelial cells. Am J Pathol. 2002;160(2):673-680.

Lombardo G, Dentelli P, Togliatto G, et al. Activated Stat5 traffick-
ing via endothelial cell-derived extracellular vesicles controls IL-3
pro-angiogenic paracrine action. Sci Rep. 2016;6:25689.

Di Santo S, Yang Z, Wyler von Ballmoos M, et al. Novel cell-free
strategy for therapeutic angiogenesis: in vitro generated condi-
tioned medium can replace progenitor cell transplantation. PLoS
ONE. 2009;4(5):e5643.

Cantaluppi V, Biancone L, Figliolini F, et al. Microvesicles derived
from endothelial progenitor cells enhance neoangiogenesis of
human pancreatic islets. Cell Transplant. 2012;21(6):1305-1320.
Ranghino A, Cantaluppi V, Grange C, et al. Endothelial progenitor
cell-derived microvesicles improve neovascularization in a mu-
rine model of hindlimb ischemia. Int J Immunopathol Pharmacol.
2012;25(1):75-85.

Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial pro-
genitor cell derived microvesicles activate an angiogenic pro-
gram in endothelial cells by a horizontal transfer of mMRNA. Blood.
2007;110(7):2440-2448.

Zhang J, Chen C, Hu B, et al. Exosomes derived from human en-
dothelial progenitor cells accelerate cutaneous wound healing by
promoting angiogenesis through Erk1/2 signaling. Int J Biol Sci.
2016;12(12):1472-1487.

Li X, Jiang C, Zhao J. Human endothelial progenitor cells-de-
rived exosomes accelerate cutaneous wound healing in diabetic
rats by promoting endothelial function. J Diabetes Complications.
2016;30(6):986-992.

Li X, Chen C, Wei L, et al. Exosomes derived from endothelial
progenitor cells attenuate vascular repair and accelerate reen-
dothelialization by enhancing endothelial function. Cytotherapy.
2016;18(2):253-262.

Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ.
Angiogenic effects of human multipotent stromal cell conditioned
medium activate the PISK-Akt pathway in hypoxic endothelial cells
to inhibit apoptosis, increase survival, and stimulate angiogenesis.
Stem Cells. 2007;25(9):2363-2370.

Burlacu A, Grigorescu G, Rosca AM, Preda MB, Simionescu M.
Factors secreted by mesenchymal stem cells and endothelial pro-
genitor cells have complementary effects on angiogenesis in vitro.
Stem Cells Dev. 2013;22(4):643-653.

Anderson JD, Johansson HJ, Graham CS, et al. Comprehensive
proteomic analysis of mesenchymal stem cell exosomes reveals
modulation of angiogenesis via nuclear factor-kappaB signaling.
Stem Cells. 2016;34(3):601-613.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z. Mesenchymal
stem cell-derived exosomes improve the microenvironment of
infarcted myocardium contributing to angiogenesis and anti-in-
flammation. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem
Pharmacol. 2015;37(6):2415-2424.

Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Van Badiavas
E. Mesenchymal stem cell exosomes induce proliferation and mi-
gration of normal and chronic wound fibroblasts, and enhance an-
giogenesis in vitro. Stem Cells Dev. 2015;24(14):1635-1647.

Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by
mesenchymal stem cells promote endothelial cell angiogenesis by
transferring miR-125a. J Cell Sci. 2016;129(11):2182-2189.
Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G.
Platelet-derived growth factor regulates the secretion of extra-
cellular vesicles by adipose mesenchymal stem cells and enhances
their angiogenic potential. Cell Commun Signal: CCS. 2014;12:26.
Kang T, Jones TM, Naddell C, et al. Adipose-derived stem cells in-
duce angiogenesis via microvesicle transport of miRNA-31. Stem
Cells Transl Med. 2016;5(4):440-450.

Zhang HC, Liu XB, Huang S, et al. Microvesicles derived from
human umbilical cord mesenchymal stem cells stimulated by hy-
poxia promote angiogenesis both in vitro and in vivo. Stem Cells
Dev. 2012;21(18):3289-3297.

Chen J, Liu Z, Hong MM, et al. Proangiogenic compositions of mi-
crovesicles derived from human umbilical cord mesenchymal stem
cells. PLoS ONE. 2014;9(12):e115316.

Zhang B, Wu X, Zhang X, et al. Human umbilical cord mesenchy-
mal stem cell exosomes enhance angiogenesis through the Wnt4/
beta-catenin pathway. Stem Cells Transl Med. 2015;4(5):513-522.
Ma J, Zhao Y, Sun L, et al. Exosomes derived from Akt-modified
human umbilical cord mesenchymal stem cells improve cardiac
regeneration and promote angiogenesis via activating platelet-de-
rived growth factor D. Stem Cells Transl Med. 2017;6(1):51-59.

Li J, Zhang Y, Liu Y, et al. Microvesicle-mediated transfer of mi-
croRNA-150 from monocytes to endothelial cells promotes angio-
genesis. J Biol Chem. 2013;288(32):23586-23596.

Sun C, Feng SB, Cao ZW, et al. Up-regulated expression of matrix
metalloproteinases in endothelial cells mediates platelet microves-
icle-induced angiogenesis. Cell Physiol Biochem: Int J Exp Cell Physiol
Biochem Pharmacol. 2017;41(6):2319-2332.

Parikh P, Hao Y, Hosseinkhani M, et al. Regeneration of axons in
injured spinal cord by activation of bone morphogenetic protein/
Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci USA.
2011;108(19):E99-107.

Qing L, Chen H, Tang J, Jia X. Exosomes and their microRNA cargo:
new players in peripheral nerve regeneration. Neurorehabilitation
Neural Repair. 2018;32(9):765-776.

Hu J, Zhou J, Li X, Wang F, Lu H. Schwann cells promote neurite
outgrowth of dorsal root ganglion neurons through secretion of
nerve growth factor. Indian J Exp Biol. 2011;49(3):177-182.
Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exo-
somes enhance axonal regeneration in the peripheral nervous sys-
tem. Glia. 2013;61(11):1795-1806.

Lo Furno D, Pellitteri R, Graziano AC, et al. Differentiation of
human adipose stem cells into neural phenotype by neuroblas-
toma- or olfactory ensheathing cells-conditioned medium. J Cell
Physiol. 2013;228(11):2109-2118.

Feng L, Gan H, Zhao W, Liu Y. Effect of transplantation of olfac-
tory ensheathing cell conditioned medium induced bone mar-
row stromal cells on rats with spinal cord injury. Mol Med Rep.
2017;16(2):1661-1668.

Gu M, Gao Z, Li X, et al. Conditioned medium of olfactory en-
sheathing cells promotes the functional recovery and axonal regen-
eration after contusive spinal cord injury. Brain Res. 2017;1654(Pt
A):43-54.



LV ET AL.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

Zhan C, Ma CB, Yuan HM, Cao BY, Zhu JJ. Macrophage-derived
microvesicles promote proliferation and migration of Schwann
cell on peripheral nerve repair. Biochem Biophys Res Commun.
2015;468(1-2):343-348.

Salgado AJ, Sousa JC, Costa BM, et al. Mesenchymal stem cells
secretome as a modulator of the neurogenic niche: basic insights
and therapeutic opportunities. Front Cell Neurosci. 2015;9:249.
Lopez-Leal R, Court FA. Schwann cell exosomes mediate neuron-
glia communication and enhance axonal regeneration. Cell Mol
Neurobiol. 2016;36(3):429-436.

Li S, Wang X, Gu Y, et al. Let-7 microRNAs regenerate peripheral
nerve regeneration by targeting nerve growth factor. Mol Ther: J
Am Soc Gene Ther. 2015;23(3):423-433.

Yi S, Wang S, Zhao Q, et al. miR-sc3, a novel microRNA, promotes
schwann cell proliferation and migration by targeting Astnl. Cell
Transplant. 2016;25(5):973-982.

YiS, YuanY, Chen Q, et al. Regulation of Schwann cell proliferation
and migration by miR-1 targeting brain-derived neurotrophic fac-
tor after peripheral nerve injury. Sci Rep. 2016;6:29121.

Li S, Zhang R, Yuan Y, et al. MiR-340 regulates fibrinolysis and
axon regrowth following sciatic nerve injury. Mol Neurobiol.
2017;54(6):4379-4389.

Yu B, Zhou S, Wang Y, et al. miR-221 and miR-222 promote
Schwann cell proliferation and migration by targeting LASS2 after
sciatic nerve injury. J Cell Sci. 2012;125(Pt 11):2675-2683.
Lopez-VerrilliMA, Caviedes A, Cabrera A, Sandoval S, Wyneken U,
Khoury M. Mesenchymal stem cell-derived exosomes from differ-
ent sources selectively promote neuritic outgrowth. Neuroscience.
2016;320:129-139.

Horie H, Kadoya T, Hikawa N, et al. Oxidized galectin-1 stimulates
macrophages to promote axonal regeneration in peripheral nerves
after axotomy.J Neurosci: Off J Soc Neurosci. 2004;24(8):1873-1880.
Nakano N, Nakai Y, Seo TB, et al. Characterization of conditioned
medium of cultured bone marrow stromal cells. Neurosci Lett.
2010;483(1):57-61.

Cantinieaux D, Quertainmont R, Blacher S, et al. Conditioned
medium from bone marrow-derived mesenchymal stem cells im-
proves recovery after spinal cord injury in rats: an original strategy
to avoid cell transplantation. PLoS ONE. 2013;8(8):e69515.

Tsai MJ, Tsai SK, Hu BR, et al. Recovery of neurological function
of ischemic stroke by application of conditioned medium of bone
marrow mesenchymal stem cells derived from normal and cerebral
ischemia rats. J Biomed Sci. 2014;21:5.

Doeppner TR, Herz J, Gorgens A, et al. Extracellular vesicles im-
prove post-stroke neuroregeneration and prevent postischemic
immunosuppression. Stem Cells Transl Med. 2015;4(10):1131-1143.
Cizkova D, Cubinkova V, Smolek T, et al. Localized intrathecal de-
livery of mesenchymal stromal cells conditioned medium improves
functional recovery in a rat model of spinal cord injury. Int J Mol Sci.
2018;19(3):870.

Kanekiyo K, Wakabayashi T, Nakano N, et al. Effects of intra-
thecal injection of the conditioned medium from bone mar-
row stromal cells on spinal cord injury in rats. J Neurotrauma.
2018;35(3):521-532.

Zhang Y, Chopp M, Liu XS, et al. Exosomes derived from mesen-
chymal stromal cells promote axonal growth of cortical neurons.
Mol Neurobiol. 2017;54(4):2659-2673.

Xin H, Wang F, Li Y, et al. Secondary release of exosomes from
astrocytes contributes to the increase in neural plasticity and
improvement of functional recovery after stroke in rats treated
with exosomes harvested from microRNA 133b-overexpress-
ing multipotent mesenchymal stromal cells. Cell Transplant.
2017;26(2):243-257.

Xin H, Li Y, Liu Z, et al. MiR-133b promotes neural plasticity and
functional recovery after treatment of stroke with multipotent

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

T\ £y
mesenchymal stromal cells in rats via transfer of exosome-en-
riched extracellular particles. Stem Cells. 2013;31(12):2737-2746.
Shen H, Yao X, Li H, et al. Role of exosomes derived from miR-133b
modified MSCs in an experimental rat model of intracerebral hem-
orrhage. J Mol Neurosci: MN. 2018;64(3):421-430.

Zhang H, Yang R, Wang Z, Lin G, Lue TF, Lin CS. Adipose tissue-de-
rived stem cells secrete CXCL5 cytokine with neurotrophic effects
on cavernous nerve regeneration. J Sexual Med. 2011;8(2):437-446.
Hao P, Liang Z, Piao H, et al. Conditioned medium of human adipose-
derived mesenchymal stem cells mediates protection in neurons
following glutamate excitotoxicity by regulating energy metabolism
and GAP-43 expression. Metab Brain Dis. 2014;29(1):193-205.
Bucan V, Vaslaitis D, Peck CT, Strauss S, Vogt PM, Radtke C. Effect
of exosomes from rat adipose-derived mesenchymal stem cells on
neurite outgrowth and sciatic nerve regeneration after crush in-
jury. Mol Neurobiol. 2019;56(3):1812-1824.

Jiang N, Xiang L, He L, et al. Exosomes mediate epithelium-
mesenchyme crosstalk in organ development. ACS Nano.
2017;11(8):7736-7746.

Zhu Y, Zhang P, Gu RL, Liu YS, Zhou YS. Origin and clinical appli-
cations of neural crest-derived dental stem cells. Chin J Dent Res.
2018;21(2):89-100.

Huang CC, Narayanan R, Alapati S, Ravindran S. Exosomes as bio-
mimetic tools for stem cell differentiation: applications in dental
pulp tissue regeneration. Biomaterials. 2016;111:103-115.

Kim HS, Lee DS, Lee JH, et al. The effect of odontoblast condi-
tioned media and dentin non-collagenous proteins on the differen-
tiation and mineralization of cementoblasts in vitro. Arch Oral Biol.
2009;54(1):71-79.

Couve E, Lovera M, Suzuki K, Schmachtenberg O. Schwann
cell phenotype changes in aging human dental pulp. J Dent Res.
2018;97(3):347-355.

Li Z, Liang Y, Pan K, et al. Schwann cells secrete extracellular ves-
icles to promote and maintain the proliferation and multipotency
of hDPCs. Cell Prolif. 2017;50(4):e12353.

Jarmalaviciute A, Tunaitis V, Pivoraite U, Venalis A, Pivoriunas
A. Exosomes from dental pulp stem cells rescue human dopami-
nergic neurons from 6-hydroxy-dopamine-induced apoptosis.
Cytotherapy. 2015;17(7):932-939.

Wen X, Nie X, ZhangL, LiuL, Deng M. Adipose tissue-deprived stem
cells acquire cementoblast features treated with dental follicle cell
conditioned medium containing dentin non-collagenous proteins
in vitro. Biochem Biophys Res Commun. 2011;409(3):583-589.
Kawai T, Katagiri W, Osugi M, Sugimura Y, Hibi H, Ueda M.
Secretomes from bone marrow-derived mesenchymal stro-
mal cells enhance periodontal tissue regeneration. Cytotherapy.
2015;17(4):369-381.

Lai CP, Mardini O, Ericsson M, et al. Dynamic biodistribution of
extracellular vesicles in vivo using a multimodal imaging reporter.
ACS Nano. 2014,8(1):483-494.

Lai CP, Kim EY, Badr CE, et al. Visualization and tracking of tu-
mour extracellular vesicle delivery and RNA translation using mul-
tiplexed reporters. Nat Commun. 2015;6:7029.

Wiklander OP, Nordin JZ, O'Loughlin A, et al. Extracellular vesicle
in vivo biodistribution is determined by cell source, route of admin-
istration and targeting. J Extracellular Vesicles. 2015;4:26316.

Hu L, Wickline SA, Hood JL. Magnetic resonance imaging
of melanoma exosomes in lymph nodes. Magn Reson Med.
2015;74(1):266-271.

Qi H, Liu C, Long L, et al. Blood exosomes endowed with mag-
netic and targeting properties for cancer therapy. ACS Nano.
2016;10(3):3323-3333.

Hwang DW, Choi H, Jang SC, et al. Noninvasive imaging of radio-
labeled exosome-mimetic nanovesicle using (99m)Tc-HMPAO. Sci
Rep. 2015;5:15636.



* L wiLEy- e —

135.

136.

137.

138.

139.

140.

141.

142.
143.

144.

145.

146.

LV ET AL.

Yanez-Mo M, Siljander PR, Andreu Z, et al. Biological proper-
ties of extracellular vesicles and their physiological functions.
J Extracellular Vesicles. 2015;4:27066.

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO.
Exosome-mediated transfer of mRNAs and microRNAs is a novel
mechanism of genetic exchange between cells. Nat Cell Biol.
2007;9(6):654-659.

Buck AH, Coakley G, Simbari F, et al. Exosomes secreted by nema-
tode parasites transfer small RNAs to mammalian cells and modu-
late innate immunity. Nat Commun. 2014;5:5488.

Zhao P, Xiao L, Peng J, Qian YQ, Huang CC. Exosomes derived
from bone marrow mesenchymal stem cells improve osteoporosis
through promoting osteoblast proliferation via MAPK pathway.
Eur Rev Med Pharmacol Sci. 2018;22(12):3962-3970.

Weilner S, Schraml E, Wieser M, et al. Secreted microvesicular
miR-31 inhibits osteogenic differentiation of mesenchymal stem
cells. Aging Cell. 2016;15(4):744-754.

Gebraad A, Kornilov R, Kaur S, et al. Monocyte-derived extracel-
lular vesicles stimulate cytokine secretion and gene expression of
matrix metalloproteinases by mesenchymal stem/stromal cells.
FEBS J. 2018;285(12):2337-2359.

Leoni G, Neumann PA, Kamaly N, et al. Annexin Al-containing ex-
tracellular vesicles and polymeric nanoparticles promote epithelial
wound repair. J Clin Investig. 2015;125(3):1215-1227.

Trinh NT, Yamashita T, Tu TC, et al. Microvesicles enhance the mo-
bility of human diabetic adipose tissue-derived mesenchymal stem
cells in vitro and improve wound healing in vivo. Biochem Biophys
Res Comm. 2016;473(4):1111-1118.

Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal
stromal cells modify macrophage polarization for resolution of
chronic inflammation via exosome-shuttled let-7b. J Transl Med.
2015;13:308.

ShiQ, Qian Z, Liu D, et al. GMSC-derived exosomes combined with
a chitosan/silk hydrogel sponge accelerates wound healing in a di-
abetic rat skin defect model. Front Physiol. 2017;8:904.

Luo ML, Liu XP, Wang F, et al. Conditioned medium from human
umbilical vein endothelial cells promotes proliferation, migration,
invasion and angiogenesis of adipose derived stem cells. Curr Med
Sci. 2018;38(1):124-130.

Bussche L, Van de Walle GR. Peripheral blood-derived mesen-
chymal stromal cells promote angiogenesis via paracrine stimula-
tion of vascular endothelial growth factor secretion in the equine
model. Stem Cells Transl Med. 2014;3(12):1514-1525.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

Estrada R, Li N, Sarojini H, An J, Lee MJ, Wang E. Secretome from
mesenchymal stem cells induces angiogenesis via Cyré1. J Cell
Physiol. 2009;219(3):563-571.

Boomsma RA, Geenen DL. Mesenchymal stem cells secrete multi-
ple cytokines that promote angiogenesis and have contrasting ef-
fects on chemotaxis and apoptosis. PLoS ONE. 2012;7(4):e35685.
Pascucci L, Alessandri G, Dall'Aglio C, et al. Membrane vesicles
mediate pro-angiogenic activity of equine adipose-derived mes-
enchymal stromal cells. Vet J. 2014;202(2):361-366.

Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles
induce angiogenesis in vitro. Br J Haematol. 2004;124(3):376-384.
Zou X, Gu D, Xing X, et al. Human mesenchymal stromal cell-
derived extracellular vesicles alleviate renal ischemic reperfu-
sion injury and enhance angiogenesis in rats. Am J Trans| Res.
2016;8(10):4289-4299.

Komaki M, Numata Y, Morioka C, et al. Exosomes of human pla-
centa-derived mesenchymal stem cells stimulate angiogenesis.
Stem Cell Res Ther. 2017;8(1):219.

Nakano N, Kanekiyo K, Nakagawa T, Asahi M, Ide C. NTAK/neu-
regulin-2 secreted by astrocytes promotes survival and neurite
outgrowth of neurons via ErbB3. Neurosci Lett. 2016;622:88-94.
Liang P, Liu J, Xiong J, et al. Neural stem cell-conditioned medium
protects neurons and promotes propriospinal neurons relay neu-
ral circuit reconnection after spinal cord injury. Cell Transplant.
2014;23(Suppl 1):545-56.

Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92
cluster in exosomes enhance neuroplasticity and functional recov-
ery after stroke in rats. Stroke. 2017;48(3):747-753.

Raisi A, Azizi S, Delirezh N, Heshmatian B, Farshid AA, Amini K.
The mesenchymal stem cell-derived microvesicles enhance sciatic
nerve regeneration in rat: a novel approach in peripheral nerve cell
therapy. J Trauma Acute Care Surg. 2014,76(4):991-997.

How to cite this article: Lv L, Sheng C, Zhou Y. Extracellular

vesicles as a novel therapeutic tool for cell-free regenerative
medicine in oral rehabilitation. J Oral Rehabil. 2020;
47(Suppl. 1):29-54. https://doi.org/10.1111/joor.12885



https://doi.org/10.1111/joor.12885

