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ABSTRACT

Background. The interactions between the gut microbiome and obesity have been
extensively studied. Although the oral cavity is the gateway to the gut, and is extensively
colonized with microbes, little is known about the oral microbiome in people with
obesity. In the present study, we investigated the salivary microbiome in obese and
normal weight healthy participants using metagenomic analysis. The subjects were
categorized into two groups, obesity and normal weight, based on their BMIs.
Methods. We characterized the salivary microbiome of 33 adults with obesity and 29
normal weight controls using high-throughput sequencing of the V3—-V4 region of the
16S rRNA gene (Illumina MiSeq). None of the selected participants had systemic, oral
mucosal, or periodontal diseases.

Results. The salivary microbiome of the obesity group was distinct from that of the nor-
mal weight group. The salivary microbiome of periodontally healthy people with obesity
had both significantly lower bacterial diversity and richness compared with the controls.
The genus Prevotella, Granulicatella, Peptostreptococcus, Solobacterium, Catonella, and
Mogibacterium were significantly more abundant in the obesity group; meanwhile the
genus Haemophilus, Corynebacterium, Capnocytophaga, and Staphylococcus were less
abundant in the obesity group. We also performed a functional analysis of the inferred
metagenomes, and showed that the salivary community associated with obesity had a
stronger signature of immune disease and a decreased functional signature related to
environmental adaptation and Xenobiotics biodegradation compared with the normal
weight controls.

Discussion. Our study demonstrates that the microbial diversity and structure of the
salivary microbiome in people with obesity are significantly different from those of
normal weight controls. These results suggested that changes in the structure and
function of salivary microbiome in people with obesity might reflect their susceptibility
to oral diseases.

Subjects Genomics, Microbiology, Dentistry

Keywords Obesity, Body-Mass Index, High-throughput nucleotide sequencing, Oral
microbiome, Microbiome

INTRODUCTION

Obesity and its co-morbidities threaten the health of humans worldwide. The prevalence
of obesity amongst Chinese adults has increased from 3.8% to 11.3% over the past two
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decades (Mi et al., 2015). Thus, based on the large population, China now contains the
second largest population of people with obesity after the United States of America (Ng
etal., 2014).

There is a growing interest in the impact of the gut microbiome on host physiology
and health. Quantitative and qualitative alterations in gut microbiome composition and
diversity can lead to pathological dysbiosis and are important predictors of many diseases
(Hollister, Gao ¢ Versalovic, 2014). It has been shown that an altered gut microbiome is
associated with obesity and its co-morbidities, such as type 2 diabetes (Backhed et al.,
2004; Turnbaugh et al., 2006; Devaraj, Hemarajata ¢ Versalovic, 2013; Ridaura et al., 2013;
Nieuwdorp et al., 2014). Some researchers have proposed that certain gut microbiota
compositions, along with an environmental predispositions, can lead to obesity via an
impairment in energy homeostasis resulting in metabolic disease(s) (Moreno-Indias et
al., 2014). Studies characterized the composition and diversity of the gut microbiome
in lean and obese phenotypes, and showed that mice with obesity had a lower gut
microbial diversity as well as an altered distributions of microbiota compared with the
lean mice (Turnbaugh et al., 2006; Turnbaugh et al., 2009). Human studies also evaluated
the gut microbiota in obese individuals, and demonstrated a higher ratio of Firmicutes
to Bacteroidetes (F/B) in the gut of obese individuals (Ley et al., 2006). However, some
others produced the opposite conclusion or failed to find significant differences in the
F/B ratio between the obesity and the controls (Duncan et al., 2008; Furet et al., 2010;
Jumpertz et al., 2011). Researchers then suggested that the gut microbiota can be classified
into three robust enterotypes (Bacteroides, Prevotella, or Ruminococcus), which correlate
with body mass index (Arumugam et al., 2011). Later studies reduced the enterotypes to
two clusters: prevotella or Bacteroides dominated. An altered gut microbial community
may contribute to the development of obesity in the host through mechanisms including
increased energy harvest from the diet, chronic low-grade endotoxinemia, regulation of
fatty acid metabolism, and modulation of gut-derived peptide secretion (Musso, Gambino
& Cassader, 2010).

The oral cavity is one of the most clinically relevant microbial habitats. Several
studies have shown that oral bacteria contribute to oral diseases (e.g., dental caries,
periodontitis, halitosis), and are also significant risk factor for diabetes mellitus, preterm
birth, cardiovascular diseases, bacteremia, and tumors (He et al., 2015). Furthermore, the
salivary microbiome is altered in patients suffering from systemic diseases, such as liver
cirrhosis, rheumatoid arthritis, and pancreatic cancer; these changes are also reflected in
the gut microbiome (Farrell et al., 2012; Qin et al., 2014; Zhang et al., 2015; Torres et al.,
2015). However, little attention has been paid to the overall characterization of the salivary
microbiome in people with obesity. A link between the oral microbiome and obesity
was first made in 2009 (Goodson et al., 2009). Several studies have reported differences
in the oral microbiomes of people with obesity and normal weight people, but the data
are inconsistent. In the oral subgingival biofilms of adolescents with obesity, researchers
discovered a higher cellular abundance of bacteria with a high phylogenetic diversity (Zeigler
et al., 2012). Piombino et al. (2014) found microbiological and biochemical differences
between the saliva of people with obesity and those of normal weight. Most recently, a
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study of the salivary microbiome of Japanese adults found a higher phylogenetic diversity in
individuals with obesity; however, the authors noted that the effects of periodontal disease
might have confounded the results (Takeshita et al., 2016). The interactions between the
salivary microbiome and obesity are still unclear, and more studies are needed to evaluate
the changes in saliva microbiota composition and the link to metabolic status.

To obtain a complete picture of the oral microbiome of people with obesity, we used
high-throughput sequencing of the 16S rRNA gene to compare the salivary microbiome in
periodontally healthy adults with obesity with normal weight controls.

MATERIALS AND METHODS

Participant recruitment and sample collection

The study was approved by the Ethics Committee of Peking University School and the
Hospital of Stomatology (PKUSSIRB- 201627023), and written informed consent was
obtained from all participants. We recruited 40 people with obesity and 40 age- and
sex-matched people of normal weight as controls. Each individual completed a basic
questionnaire and was given a comprehensive oral examination. Decayed, missing, and
filled teeth (DFMT); decayed, missed, filled surfaces (DMEFS); plaque index (PLI); sulcus
bleeding index (SBI), periodontal pocket depth (PPD); number of teeth, and number of
restorations were examined. A single experienced dentist performed all of the examinations
and diagnoses. The inclusion criteria were as follows: aged between 20 and 40 years, the
body mass index (BMI) was calculated and the participants were divided into a normal
weight group (BMI = 18.5-20) and an obesity group (BMI >30), based on the WHO
guidelines, mean periodontal pocket depth <3 mm, and less than 10% of teeth which
sulcus bleeding index >3. The exclusion criteria were: diagnosed presence of a disease, use
of medications, a history of smoking, pregnancy/lactation, menopause, use of antibiotics,
hormonal contraceptives within the three months prior to sample collection, fewer than
20 teeth in the oral cavity, or any periodontal attachment loss. Subjects were divided into
group based on body mass index (BMI), with subjects having a BMI between 18.5 and 20
being placed in the normal weight group and subjects having a BMI greater than 30 being
placed in the obesity group; this criterion is based on WHO guidelines. We screened 80
persons; 33 people with obesity and 29 normal weight people in good oral health were
enrolled in the study. Eighteen subjects were excluded by their having periodontitis or less
than 20 teeth.

Saliva samples were collected according to a standard technique: 5 mL of spontaneous,
whole, unstimulated saliva was collected into a 50 mL sterile DNA-free conical tube
from each participant between 8-11 a.m. (maximum collection time fixed at 30 min).
Participants were asked not to drink or eat for at least 8 h before sampling. The samples
were divided into five aliquots and stored at —80 °C until further analysis.

DNA extraction and 16S rRNA gene pyrosequencing

Genomic DNA was extracted using the QIAamp DNA Blood Mini Kit according to the
manufacturer’s instructions (Qiagen, Hilden, Germany). DNA purity was evaluated
via A260/A280 ratio using a NanoDrop 7000 Spectrophotometer (Thermo Fisher
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Scientific, Waltham, MA, USA), and DNA integrity was checked by 1% agarose gel
electrophoresis. PCR amplification of the V3-V4 regions of bacterial 16S rRNA was
performed using the universal primers (338F 5'-ACTCCTACGGGAGGCAGCA-3’ and
806R 5'-GGACTACHVGGGTWTCTAAT-3'). All PCR products were sequenced on an
[Nlumina Miseq PE300 Sequencing platform according to the standard protocols (Illumina,
Inc., San Diego, CA, USA). The PCR program was: initial denaturation at 95 °C for 5 min; 25
cycles of denaturation at 95 °C for 30 s, annealing at 56 °C for 30 s, and extension at 72 °C for
40 s, and; final extension of 72 °C for 10 min. The amplicon mixture were pooled according
to the manufacturer’s instructions (Illumina, Inc., San Diego, CA, USA). The sequence data
had been deposited the NCBI GenBank database (http://www.ncbi.nlm.nih.gov) under the
accession number MF800965-MF801301.

16S data processing and statistical analysis
A sample size estimation was performed to determine the probability that the samples
were representative (Motulsky, 2010). The raw sequencing data were analyzed using the
Quantitative Insights Into Microbial Ecology (QIIME v.1.8.1; http://www.qiime.org)
package (Caporaso et al., 2010). Paired V3—V4 16S rRNA sequences were trimmed using
trimmomatic (Version 0.33) software and merged into a single sequence using FLASH
(Version 1.2.10). Merged sequences were filtered to remove the low-quality sequences and
binned according to their specific barcodes. Sequences were assembled according to the
following criteria: (i) raw reads shorter than 110 nucleotides were discarded; (ii) reads
were truncated at any site receiving an average quality score <20 over a 50 bp sliding
window, and the truncated reads that were shorter than 50 bp were discarded; and, (iii)
only sequences that overlapped for more than 10 bp were assembled. Reads that could
not be assembled were discarded. The unique sequence set was classified into operational
taxonomic units (OTUs) with a cutoff of 97% identity using the de novo OTU selection
strategy. We retained only those OTUs that were present with at least 0.01% mean relative
abundance as predominant. Taxonomies were assigned by the RDP classifier (Version
2.2) (Cole et al., 2003) against the Human Oral Microbiome Database (Chen et al., 2010)
(HOMD RefSeq, Version 13.2) with a confidence threshold of 0.7. Chimeric sequences
were removed using Usearch (Version 8.0). Data were rarefied to 35,101 reads per sample.
Alpha diversity was assessed by the Chao 1 and Shannon index. To visualize the beta
diversity between groups, the unweighted and weighted UniFrac distances (Lozuporne,
Hamady & Knight, 2006) were calculated and plotted via principal coordinate analysis
(PCoA). PERMANOVA was used to test significance. Mann—Whitney U tests were used
for alpha diversity comparisons. Differences in the relative abundances of taxa at the
class, order, family, genus levels were analyzed using the Kurskal-Wallis test and plotted
using GraphPad Prism (Version 6.0). Adonis testing was used to confirm significant
differences in microbial community composition; all of these were calculated in QIIME.
All remaining statistical calculations were performed in IBM SPSS Statistics (Version
20) using Mann-Whitney U tests to compare between groups. Fisher’s exact tests were
used to compare parameters. All statistical tests were two-sided, and P values <0.05 were

Wu et al. (2018), PeerJ, DOI 10.7717/peerj.4458 4/21


https://peerj.com
http://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/nuccore/MF800965
https://www.ncbi.nlm.nih.gov/nuccore/MF801301
http://www.qiime.org
http://dx.doi.org/10.7717/peerj.4458

Peer

considered to be significant. Benjamini—-Hochberg false discovery rate (FDR) correction
was used to correct for multiple hypothesis testing where applicable.

Predictive function analysis was performed using the PICRUSt algorithm (Langille et
al., 2013) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology
(KO) classification (Kanehisa et al., 2008). The 16S rRNA gene data was generated using
the closed-reference OTUs picked by QIIME over the same set of sequeces against the
Greengenes database (Version 18.3). The ‘DESeq’ function in DESeq2 R package was
used to detect functional pathways that were significantly different in abundance between
groups. Inferred functional shifts in the salivary microbiome and genus-level taxonomic
contributions were obtained using the Functional Shifts’ Taxonomic Contributors
(FishTaco) software (Manor ¢ Borenstein, 2017). FishTaco was used to infer a taxonomic
and functional abundance profile from the PICRUSt analysis. The metagenome- and taxa-
based functional shifts were calculated using a comparative functional analysis between
samples from the normal weight and obese groups; then, the functional shifts were
decomposed into genus-level contributions. Each functional shift in pairwise comparisons
with the controls was grouped into one of four different modes: (1) case-associated
taxa increasing a functional shift (i.e., case-associated taxa driving case-enrichment); (2)
case-associated taxa attenuating case-enrichment (i.e., taxa over-represented in case but
no enzymatic activity in the pathway); (3) control-associated taxa driving case-enrichment
(i.e., taxa over-represented in controls with no enzymatic activity in the pathway), and;
(4) control-associated taxa attenuating case-enrichment (i.e., taxa over-represented in
controls but no enzymatic activity in the pathway). The output result was visualized using
FishTacoPlot package (https://github.com/borenstein-lab/fishtaco-plot) in R (Version
3.4.3).

RESULTS

Demographic and clinical parameters

There were no significant differences in gender distribution; ages; periodontal conditions;
tooth-brushing habits; decayed, missing or filled teeth; decayed, missing, or filled surfaces;
number of teeth; number of restorations; plaque index; sulcus bleeding index, or tooth-
brushing frequency between the two groups (P > 0.05) (Table 1). The mean probing depth
was greater in participants with obesity than in controls.

Sequencing data

A total of 7,968,621 raw sequence reads were generated from the 62 saliva samples. There
were 5,627,309 sequence reads after data trimming and quality filtering, and the average
number of reads per sample was 90,763 (ranging from 35,101 to 257,477; Table S1). The
average sequence length was 466 bp. 344 OTUs (abundance >0.01%) were detected as
predominant, with an average of 222 OTUs per sample (range: 160 to 265).

The salivary microbiome in people with obesity has a lower bacterial
richness than in normal weight controls

The indices Chaol, Good’s coverage, observed OTUs, Shannon index, and phylogenetic
diversity whole tree were used to examine alpha diversity (Table S2). Bacterial community
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Table 1 Demographic and clinical characteristics. All of the examinations and diagnoses were per-
formed by a single experienced dentist.

Variables Obesity (n=33) Controls (n=29) P-value
Mean (SD) Mean (SD)

Male/female 28/5 23/6 0.741°
Age, years 31.0(5.5) 29.5(4.0) 0.209"
BMI, kg/m? 32.8(3.8) 19.7(1.4) 0.000"
DMET 1.2(1.4) 1.4(2.8) 0.053"
DMFS 1.4(1.9) 2.8(3.6) 0.061°
Number of teeth 27.8(0.8) 27.6(0.9) 0.362"
Number of restorations 0.2(0.4) 0.7(2.2) 0.178"
Mean PLI 0.8(0.3) 0.8(0.3) 0.595"
Mean SBI 1.8(0.4) 1.8(0.4) 0.748"
Mean PD 2.8(0.2) 2.6(0.3) 0.010"
Tooth-brushing frequency

More than once a day 21 25

Once a day 9 4 0.07°

Less than once a day 3 0 0.07°

Notes.
DMFT, decayed missing, filled teeth; DMFS, decayed, missing, filled surfaces; PLI, plaque index; SBI, sulcus bleeding in-
dex; PPD, periodontal pocket depth.
2% test.
PANOVA test.
CFisher’s exact test.

richness (Chaol) and diversity (Shannon) of the microbiome in the obesity group were
lower than in control group (P = 0.006 for Chaol and P = 0.037 for Shannon; Fig. 1). The
Good’s coverage estimator for each group was >99%, this indicates that the sequencing
depth was sufficient to saturate the bacterial diversity. The rank-abundance curve had a
steep slope (Fig. S1).

The relative abundance and bacterial community structure of the
salivary microbiome differ between people with obesity and normal
weight controls
Analysis of the relative abundance of microbial taxonomic groups showed that salivary
bacterial composition differed between the two groups. In total, 10 phyla, 20 classes, 27
orders, 39 families, 74 genera, and 181 species were identified in the saliva samples. The
five most abundant phyla were Firmicutes (38.8%), Proteobacteria (33.4%), Bacteroidetes
(18.0%), Actinobacteria (5.4%), and Fusobacteria (2.9%), which accounted for 98.6% of
the total sequences. Other dominant taxa are described in Tables S3-57. The salivary
microbiome was dominated by twelve genera: streptococcus, Neisseria, Haemophilus,
Prevotella, Porphyromonas, Veillonella, Gemella, Rothia, Granulicatella, Fusobacterium,
Actinomyces, and Alloprevotella. These genera accounted for 90.2% of all sequences.
No other genera had a relative abundance >1%.

The differences in the overall composition of the oral microbiome of the normal
weight controls and obese participants were investigated. No statistically significant
differences in bacterial relative abundance between the groups were observed at
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Figure 1 The alpha diversity of people with obesity and controls. The alpha diversity of people with
obesity and normal weight controls. A two-tailed Mann—Whitney U test was used; *P < 0.05, **P < 0.01.
Normal weight subjects were significantly different by the Chao 1 (A) and Shannon index (B) measures of
diversity.

Full-size Gal DOI: 10.7717/peerj.4458/fig-1

phylum level. The relative abundance levels of four classes, eight orders, and 13
families were significantly different between the two groups. Of these, two classes,
two orders, and eight families were over-represented in obese group (FDR adjusted
P < 0.05, Kruskal-Wallis test; Figs. 2A-2C). At the class level, the proportions of
Erysipelotrichia and Bacteroidia were increased in the saliva samples of obese group;
meanwhile, the proportions of the Gammaproteobacteria and Flavobacteriia members
were decreased (Fig. 2A). At the order level, the proportions of the Bacteroidales, and
Erysipelotrichales members were increased in the saliva samples of the obese group;
meanwhile, the proportions of the Pasteurellales, Burkholderiales, Flavobacteriales,
Corynebacteriales, Cardiobacteriales, and Xanthomonadales were decreased (Fig. 2B).
At the family level, Prevotellaceae, Carnobacteriaceae, Peptostreptococcaceae_XI,
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Figure 2 Differentially abundant taxa between people with obesity and normal weight controls. The
taxa differed in terms of relative abundance at the class level (A), the order level (B), the family level (C),
and the genus level (D). (Kurskal-Wallis test, FDR -adjusted P < 0.05). The bars indicate mean & SEM.
Red for obesity group, blue for normal weight group.
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Erysipelotrichaceae, Peptococcaceae, Xanthomonadaceae, Comamonadaceae, and
Cardiobacteriaceae were enriched in the saliva samples of the obese group; meanwhile, the
propotions of Pasteurellaceae, Burkholderiaceae, Flavobacteriaceae, Corynebacteriaceae,
and Staphylococcaceae were higher in the control group (Fig. 2C). The relative
abundances of 15 genera were significantly different in the saliva samples of the
obese group compared with that of the control samples. The relative abundances of
Prevotella, Granulicatella, Peptostreptococcaceae_XIG-1, Peptostreptococcus, Solobacterium,
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Figure 3 Differences in bacterial community structures of the salivary microbiome in people with
obesity and normal weight controls. A principal coordinate analysis (PCoA) plot generated using un-
weighted UniFrac distances shows clear differences between the two groups.
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Mogibacterium, Catonella, and Peptostreptococcaceae_XIG-7 increased; meanwhile, the
relative abundances of Haemophilus, Lautropia, Capnocytophaga, Corynebacterium,
Staphylococcus, Cardiobacterium, and Stenotrophomonas decreased (Fig. 2D). Of the 15
differentially abundant genera, 13 were detected in all saliva samples. The detection
frequency of Staphylococcus was 75.9% (22/29) in normal weight participants and 36.4%
(12/33) in obese participants (P = 0.001). Further analysis at species levels were described
in Table S8.

A PCoA analysis of microbial OTUs revealed a difference in the microbial community
composition using unweighted UniFrac distance (Fig. 3, P =0.0001 by PERMANOVA), as
the two groups were segregated on a PCoA plot at P < 0.001. The weighed version of the
metric was showed in Fig. S2 (P =0.0014 by PERMANOVA).

Comparison of the metabolic characteristics of the salivary
microbiome in people with obesity and normal weight controls
PICRUSt analysis was performed based on the 16S rRNA composition data of each sample
to predict bacterial functions of members of the saliva community. Subsequent analyses
revealed significant differences between the estimated functional capabilities of salivary
microbiome from normal controls and the obesity groups (Fig. 4). At Level 2, eight KEGG
Orthologies were found to be significantly different between salivary bacteria of obese and
normal weight samples. PICRUSt analysis showed a significant increase in the microbial
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genetic material that is KO-annotated to immune system and immune disease. Meanwhile,
the normal weight control group exhibited an increased gene involvement in environmental
adaptation; Xenobiotic biodegradation and metabolism; Signal transduction; Metabolism
of other amino acids; and, Cellular community—prokaryotes. In general, the salivary
community associated with obesity had a stronger signature of immune disease and

a decreased functional signature related to environmental adaptation and Xenobiotic
biodegradation compared with the normal weight controls. Then we identified the taxa
that are driving the functional shifts using FishTaco (Version 1.1.1) (Fig. 5, Table S9).
We observed shifts in 16 KEGG pathway modules: Pentose phosphate pathway, non-
oxidative phase, fructose 6P = ribose 5P (M00007), Glucuronate pathway (uronate
pathway) (M00014), Serine biosynthesis, glycerate-3P = serine (M00020), Histidine
biosynthesis, PRPP = histidine (M00026), D-Glucuronate degradation, D-glucuronate =
pyruvate + D-glyceraldehyde 3P (M00061), Ascorbate biosynthesis, animals, glucose-1P
= ascorbate (M00129), Ribosome, archaea (M00179), N-Acetylglucosamine transport
system (M00205), AI-2 transport system (M00219), PTS system, cellobiose-specific

II component (M00275), PTS system, N-acetylgalactosamine-specific II component
(M00277), PTS system, ascorbate-specific II component (M00283), Semi-phosphorylative
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Entner-Doudoroff pathway, gluconate = glycerate-3P (M00308), Nucleotide sugar
biosynthesis, eukaryotes (M00361), PhoR-PhoB (phosphate starvation response) two-
component regulatory system (M00434), CssS-CssR (secretion stress response) two-
component regulatory system (M00448). This analysis highlighted that Prevotella and
Granulicatella were the largest contributor to alteraions in the function modules. The
obese-associated genus Granulicatella was a major driver of the enrichment in the modules
belong to carbohydrate and lipid metabolism and environmental information processing.
The genus Prevotella was the main driver of the enrichment of glucuronate pathway and
serine biosynthesis pathway modules in obese samples. In addition, in most modules
the genus Haemophilus, which was depleted in obese people, was also a major driver of
functional shifts.

DISCUSSION

The purpose of this study was to characterize the salivary microbiome in Chinese people
with obesity, which has not been studied. In the present study, we described the distinct
salivary microbial population and functional profiles of normal weight and obese people.

One effect of the microbiota is to aid the host in resisting invasion. From an ecological
point of view, biodiversity is perceived to be synonymous with ecosystem health, and
more diverse communities are believed to have increased stability and resistance towards
invasion and other disturbances (Levine ¢» D’Antonio, 1999). Changes in species diversity
are a hallmark of many dysbiotic bacterial conditions. Decreased gut microbiome diversity
has been linked to obesity (Turnbaugh et al., 2009; Le Chatelier et al., 2013), inflammatory
bowel disease (IBD) (Sha et al., 2013), recurrent Clostridium difficile disease (CDAD)
(Willing et al., 2010), colorectal cancer (Ahn et al., 2013), esophageal cancer (Chen et al.,
2015), and Sjogren’s syndrome (Li et al., 2016). Similar associations between the altered
microbial diversity and unhealthy or inflammatory states in the host have been found with
the oral microbiota. Lower diversities have been found in the oral microbiomes of patients
with systemic diseases, such as pediatric Crohn’s disease (Docktor et al., 2012) and hepatitis
B virus-induced chronic liver disease (Ling ef al., 2015). Specific to the oral ecosystem,
periodontitis (Ai et al., 2017), dental caries (Simdn-Soro et al., 2013) and increased candida
load are associated with a decrease in microbial diversity (Kraneveld et al., 2012). It is
possible that the alterations in salivary microbial diversity in people with obesity may
contribute to a higher risk for oral disease.

Significant differences in the gut microbiome were identified between people with obesity
and controls (Ley et al., 2006). Data obtained from animal models and human studies have
revealed the correlation between obesity and altered gut phyla, despite conflicting data. In
the present study, no significant differences emerged between groups at phylum level in
the salivary microbiome, however, some significant variations were noted between groups
at higher taxonomic levels. Salivary gram-negative Haemphilus and Cardiobacterium were
elevated in the normal weight controls as compared to obesity group, which are similar to
those found in a study of autoimmune rheumatoid arthritis (Zhang et al., 2015). Higher
salivary Prevotella and lower Lautropia, Corynebacterium, and Cardiobacterium were also
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linked to esophageal cancer subjects and diabetes mellitus (Chen et al., 2015; Janem et al.,
2017). These studies showed that systemic disease states correlate with relative depletion
of certain salivary bacteria and microbial dysbiosis of different natures. In our study,
the relative abundances of Prevotella, Granulicatella, Peptostreptococcus, Solobacterium,
Catonella, and Mogibacterium were significantly higher in the obesity group. Prevotella
species predominate in periodontal diseases and abscesses (Herrera et al., 2008), and
may be involved with other bacterial species in the perpetuation of chronic periodontal
and systemic inflammation (Alauzet, Marchandin ¢ Lozniewski, 2010). It is noted that the
increase abundance of Prevotella has been observed in several localized and systemic diseases
including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders and
low-grade systemic inflammation, linked to a shift towards pro-inflammatory Th helper
type 17 responses (Larsen, 2017). Over-representation of Prevotellaceae is proposed as a
marker of microbial dsybiosis predisposing to inflammation and metabolic disease (Furet
et al., 2010). Researchers have noted that salivary Prevotella is positively associated with
pro-inflammatory cytokine interleukin-1 beta, thus it marks the high pro-inflammatory
state (Said et al., 2014; Acharya et al., 2017).

Granulicatella species, although considered to be a commensal member of the human
oral community, have been found in endodontic infection (Siqueira ¢ Rocas, 2006), dental
abscesses (Robertson ¢ Smith, 2009), and can also cause a variety of serious infections
such as bacterial endocarditis and bacteraemia (Cargill et al., 2012). Raised salivary
Granulicatella was also found linked to pancreatic cancer, supporting the notion that
certain oral bacteria may be implicated in systemic diseases including pancreatic cancer,
related to oral inflammation and confer an increased risk of systemic disease (Farrell
et al., 2012). Peptostreptococcus species have also been associated with periodontal and
endodontic infections (Riggio, Lennon ¢ Smith, 2001); the same trend has been reported
for Mogibacterium and Catonella species (Siqueira ¢ Rocas, 2006; Robertson ¢ Smith, 2009;
Colombo et al., 2009).

A previous study failed to establish a clear correlation between obesity and the salivary
microbiome maybe due to the lack of medical information (Piombino et al., 2014). Our
exclusion criteria ensured that none of the participants had systemic disease, periodontal
inflammation, or other oral diseases. Given the above, our study showed the altered salivary
microbial diversity and composition in people with obesity, which might contribute to
the risk for oral diseases such as periodontitis. Future studies using metagenomic shotgun
sequencing are necessary to characterize the oral microbiome at the species level, in order
to provide a better explanation.

Many studies have shown shifts in gut microbiome composition during alterations
in energy balance (Turnbaugh et al., 2006) and glucose metabolism (Cani et al., 2007),
as well as low-grade inflammation (Everard et al., 2011). Obesity is associated with
substantial metabolic and endocrine abnormalities, including changes in sex hormone
metabolism, insulin and insulin-like growth factor signaling, as well as adipokines
or inflammatory pathways (Calle & Kaaks, 2004; Renehan, Zwahlen & Egger, 2015).

The chronic inflammation state associated with obesity may impact the dynamic oral
environment and increase the risk for oral diseases. Our findings showed that the salivary
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microbiome of people with obesity was significantly different with that of normal weight
controls. Analysis showed dissimilarities in the relative abundance of genes involved in
several KOs, which concurred with the differences in bacterial community profiles between
the two groups. There was a higher signature of immune disease and a decreased functional
signature related to environmental adaptation and Xenobiotics biodegradation compared
with the normal weight controls.

Westcott &~ Schloss (2015) used two previously published datasets to analyze six de
novo algorithms, Swarm, and the open-reference and closed-reference methods and
demonstrated that de novo methods are the optimal method for assigning sequences into
OTUs. Therefore, we used the de novo OTU picking method in this study. Meanwhile,
we also used open reference picking methods and produce higher number of OTUs (443
OTUs) at the same filter condition. A systematic and comprehensive contrastive study is
needed to compare open reference and closed reference OTU picking strategy with the one
we currently used and reveal the more appropriate strategy in the future.

The strengths of our study lay in the use of strict exclusion criteria regarding periodontal
disease; thus only periodontally healthy individuals were investigated. The potential
influence of confounding external variables, such as pathological conditions, medications,
antibiotics, and smoking, was avoided. Potential weaknesses were that we did not obtain
dietary records or stool samples to investigate the correlation between the gut and oral
microbiomes in people with obesity. Another limitation is that we recruited more male
participants than female. While gender-related differences in microbiome and metabolome
of saliva have been observed and have been associated with salivary pH and dietary protein
intake (Zaura et al., 2017). The results from inference regarding metabolic profiles using
PICRUSt should be interpreted conservatively for the known intra-variation in gene
content. Future investigations may also benefit from larger cohorts and metagenomic
shotgun sequencing, which could verify the predicted functional differences.

CONCLUSIONS

We demonstrate that the microbial diversity, composition, and structure of the salivary
microbiome of people with obesity are different from those of people of a normal weight,
and provide new references that the alterations of salivary microbiome may be a systematic
response to obesity, which might contribute to the risk for oral disorders. On the other
hand, the expansion of some bacteria in saliva may assist the development of obesity

or other systemic disorders through immune-inflammatory processes. Additionally, we
predicted bacterial metabolic pathways, and found there was a higher signature of immune
disease and a decreased functional signature related to environmental adaptation and
Xenobiotics biodegradation in people with obesity compared with the normal weight
controls. Our results offer new insights into the reciprocal impact between the salivary
microbiome and obesity; however, more research is needed to explain how salivary
microbiome affect the susceptibility of people with obesity to develop oral diseases and
other systemic inflammatory disorders.
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