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Abstract: Background: Bone mesenchymal stem cells (BMSCs) are multipotent stromal cells provid-

ing a useful cell source for treating bone diseases and metabolic disorders. BMSCs fate determination 

and lineage progression are controlled by multiple cytokines, transcriptional factors, signaling path-

ways, and microRNAs (miRNAs). MiRNAs are small non-coding RNAs that inhibit the post-

transcriptional gene expression or degrade their targets. They are closely involved in controlling the 

key steps of osteogenesis and adipogenesis of BMSCs. 

Objective: We aim to summarize the roles of miRNAs and their pathways in regulating osteogenic and 

adipogenic differentiation of BMSCs, and sketch its preliminary applications in bone regeneration. 

Method: We reviewed the published literature about the microRNA regulation in osteogenic and adi-

pogenic differentiation of BMSCs. 

Results: Most of miRNAs are expressed in BMSCs, perform as negative regulators of osteogenesis and 

have bidirectional effects on adipogenesis. Runx2 and PPAR  are two key transcriptional factors in 

osteogenesis and adipogenesis, respectively. 

Conclusion: Anti-miRNAs or miRNA mimics is potential therapeutic strategy to repress pathological 

miRNAs for cellular therapies to bone diseases. The preliminary applications of miRNAs in BMSCs 

strongly suggested their bright future in bone regeneration. 
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1. INTRODUCTION 

Bone mesenchymal stem cells (BMSCs) are multipotent 
stromal cells that can differentiate into a variety of cell types, 
such as osteoblasts, adipocytes, chondrocyte, and etc. [1, 2]. 
Accumulating evidences support this theory that heightened 
osteoblastic and diminished adipocytic differentiation occurs 
through a “switch-like” diversion of BMSCs to osteoblasto-
genesis [3]. Many factors strictly govern the BMSCs’ fates, 
and therefore they comprise a complex network to regulate 
the differentiation of BMSCs to a precisely-tuned extent. For 
example, multiple cytokines, such as TGF  and BMP, in-
duce osteogenic and adipogenic differentiation [4-6]. A vari-
ety of transcription factors including Runx2, Osterix, and 
SATB2 is related with osteogenesis [7, 8]. In addition, the 
pathways of Smad, MAPK, Wnt, Notch, and Hedgehog are 
involved in the above [9, 10]. What is worthy taking special 
consideration is that microRNAs (miRNAs) have been newly 
identified to play a crucial role in BMSCs’ differentiation.  
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MiRNAs are small non-coding RNAs serving as repres-
sors of the post-transcriptional gene expression or degraders 
of their targets [11, 12]. Mature miRNAs are composed of 
approximately 22 nucleotides by binding with the 3’ un-
translated region (3’UTR) imperfectly complementarily [13]. 
They widely existed in eukaryotic organisms and had a tight 
relationship with cell differentiation, proliferation, and sur-
vival [14]. Moreover, miRNAs are stably expressed in body 
fluids, such as serum, plasma, urine, and saliva. So they are 
regarded as reliable markers of curative effect and prognosis 
[12]. At the same time, miRNAs are important regulators of 
bone remodeling in multiple aspects and signaling pathways. 
Therefore, it is needed to study the regulation roles of miR-
NAs on bone metabolism.  

Of note, there is a complex circuit between miRNAs and 
bone homeostasis. Based on the published literature, differ-
ent miRNAs interact with different genes and differentiation 
direction. In this review, we will summarize the recent de-
velopment about the miRNAs that control BMSCs’ fate and 
the related circuitry. It will shed light on the potential appli-
cation of miRNAs to bone defect and provide a new clue for 
bone regeneration.  
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MicroRNA Regulation in Osteogenic and Adipogenic Differentiation Current Stem Cell Research & Therapy, 2018, Vol. 13, No. 1    27 

2. MIRNAS CONTROL THE PHENOTYPES OF 

BMSCS 

Although lots of miRNAs have been detected to either 
increase or decrease during BMSCs formation, differentia-
tion and maturation, only a few of them are significantly 
changed and have meaningful targets related with bone me-
tabolism, and then are valuable for us to further study. Long-
term culture of BMSCs tended to increase miR-29C, miR-
369-5P, miR-371, miR-499, and miR-LET-7F [15]. Data 
showed that miR-335 orchestrated cell proliferation, migra-
tion and differentiation of BMSCs. It controlled the switch 
between the resting and reparative phenotypes of BMSCs 
[16]. Differential miRNA expression analyses revealed that 
miR-335 was significantly downregulated during BMSCs 
differentiation. MiR-335 overexpression inhibited BMSCs’ 
proliferation and migration, and differentiation. Wnt upregu-
lated miR-335 expression, while interferon-c downregulated 
it. RUNX2 was witnessed as a direct target of miR-335 in 
BMSCs. However, Yang et al. found that increased miR-21 
expression was associated with an elevated differentiation 
potential of adipogenesis and osteogenesis [17]. MiR-21 
overexpression elevated PPAR  and runx2 expression during 
BMSC differentiation, whereas miR-21 knockdown reduced 
the two genes. The ERK–MAPK signaling pathway activity 
varied accordingly followed the up and down of miR-21 
during the first 4 days of adipogenesis and osteogenesis. 

3. THE REGULATION ROLES OF MIRNAS ON OS-

TEOGENESIS 

Lots of studies have delineated various miRNAs expres-
sion in bone tissue or bone diseases. More and more findings 
indicated that miRNAs are key regulators of bone formation 
and have a close correlation with signal pathways and tran-
scription factors that control osteoblast formation and differ-
entiation. MiR-138 was expressed in mouse calvaria, but was 
very low in long bones and bone marrow [18]. A set of miR-
22-3p, miR-328-3p, and let-7g-5p was obviously changed in 
175 serum miRNAs obtained from osteoporosis patients and 
confirmed their effects on osteogenic differentiation BMSCs 
in vitro [19]. These reports implied a key role of miRNAs in 
osteoblastogenesis. Generally, the related miRNAs acted 
with osteo-related genes through the following three princi-
pal pathways (Fig. 1). It is deduced that they have cross-talks 
between each other, but few literature about it.  

3.1. MiRNAs Regulation on BMP-Smad1/5/8 Signaling 

Pathways of Osteogenic Differentiation 

BMPs are members of the transforming growth factor 
beta (TGF ) superfamily, and are the most effective os-
teogenic activators until now [4-6]. BMP receptors activate 
intracellular downstream Smads and then trigger a series of 
cascade reactions. MiR-214 was down-regulated during os-
teogenesis and up-regulated in BMSCs of osteoporotic mice 
[20]. MiR-214 overexpression suppressed BMSCs’ os-
teoblast differentiation of in vitro, whereas inhibition of 
miR-214 function accelerated this process. FGFR1 was sug-
gested as a direct target of miR-214. Similarly, miR-31 ex-
pression decreased progressively during BMSCs differentia-
tion. Inhibition of miR-31 obviously enhanced ALP activity 
and mineralization in BMSCs cultures [21]. Overexpression 

of miR-31 obviously reduced expression of osteopontin 
(OPN), bone sialoprotein (BSP), osterix, and osteocalcin, but 
not Runx2 [22]. Based on in silico analysis, six BMPs gene 
homeobox a10 (HOXA10)-targeting miRNAs were identi-
fied among which miR-320a was downregulated during os-
teogenic induction [23]. MiR-320a overexpression down-
regulated HOXA10 and significantly inhibited bone forma-
tion in BMSCs. Ectopic expression of HOXA10 rescued the 
effects of miR-320a on osteogenesis. MiR-153 was a 
mechano-sensitive miRNA that regulated osteoblast differen-
tiation by directly targeting BMPR2. Its overexpression in-
hibited the osteogenic differentiation of BMSCs [24]. 
Knockdown of BMPR2 by RNA interference suppressed the 
osteogenesis, with a similar effect to the upregulation of 
miR-153. Adversely, another group found that miR-26a 
treatment could effectively increase the osteogenesis [25]. It 
was found that miR-26a conducted its effect through 
BMP/Smad signaling pathway and then repressing Tob1 
protein expression. 

3.2. MiRNAs Regulation on WNT- CATENIN Signaling 

Wnt pathway, as a positive regulator of BMSCs self-
renewal, was involved in diverse process, such as embryonic 
development, tissue homeostasis, and cancer pathogenesis. 
Zhang et al. reported that regulation of Wnt pathway by miR-
27 and miR-29 stimulated human oseogenesis [26, 27]. Other 
reports also suggested that miR-27 and miR-142-3P upregu-
lated and miR-335-50 downregulated during osteoblast differ-
entiation [28]. In addition, miR 346 promoted the osteogenic 

 

Fig. (1). Osteo-specific miRNAs through three main signaling 

pathways and their target genes. +: miRNAs acted as activators; -: 
miRNAs acted as suppressors.  
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differentiation of BMSCs by targeting glycogen synthase 
kinase 3  (GSK 3 ) [29] through the Wnt/ catenin path-
way [30, 31]. 

3.3. miRNAs Regulation Through TGF /Activins-
Smad2/3 Pathway  

Activin is another member of TGF  superfamily. Data 
showed that miR-21 played an important role in the stretch-
induced osteogenesis of human periodontal ligament stem 
cells by directly targeting the activin receptor type IIB 
(ACVR2B), a transmembrane serine/threonine receptor kinase 
[32]. Similarly, miR-210 was suggested as a positive regulator 
of osteoblastic differentiation by suppressing the TGF /activin 
pathway through inhibition of AcvR1B [33]. In addition, en-
hanced miR-146a expression was found in osteogenesis target-
ing SMAD2 and SMAD3 of the TGF  pathway [34]. 

3.4. Target Genes Involved in the Above Pathways 

Runx2 is a bone transcription factor essential for bone 
formation and bone mineralization [35]. Osterix, another 
important transcription factor, also regulates osteogenesis in 
multi-dimension [36]. MiR-23a, miR-30c, miR-34c, miR-
133a, miR-135a, miR-205, and miR-217 were reported as 
seven Runx2-targeting miRNAs [37]. At the same time, 
miR-214, miR-31, and miR-637 directly inhibited osterix 
expression [38-40]. Data demonstrated that miR-222 expres-
sion significantly decreased during the osteogenesis [41]. 
Inhibition of miR-222 stimulated osteogenic differentiation. 
Over expression of miR-222 acted opposite. Inhibition of 
miR-222-3p function by lentiviruses in BMSCs promoted 
expression of ALP activity and matrix mineralization 
through Smad5- RUNX2 signaling axis. Microarray assay 
from 3 donors demonstrated that miR-31 and Osterix in-
versely correlated during osteogenic differentiation [22]. 
Also, miR-205 expression was down-regulated in a time-
dependent manner during osteogenesis [42]. Decreased miR-
205 enhanced bone formation by up-regulating BSP and 
OPN protein levels and increasing ALP activity and osteo-
calcin secretion. Furthermore, miR-205 regulated protein 
expression of SATB2 and Runx2. Overexpression of SATB2 
activated Runx2 and could rescued the negative effects of 
miR-205 on osteogenesis.  

4. EFFECTS OF miRNAs ON ADIPOGENESIS 

The essential transcriptical event involved in adipocytic 
phenotype is PPAR  and the expression of CCAAT/enhancer-
binding protein  (C/EBP ) [43]. MiR-369-5p and miR-371 
were antagonistic up-stream regulators of adipogenesis [15]. 
MiR-20a and miR-548d-5p repressed adipogenic differentia-
tion of BMSCs through PPAR  signaling [44, 45]. Data sug-
gested that miR-320 family including miR-320a, 320b, 320c, 
320d and 320e, were upregulated during adipogenic differen-
tiation of BMSCs [46]. MiR-320c overexpression in BMSCs 
promoted adipocytic differentiation and prompted adipocytes 
formation. Stable expression of miR-320c at physiological 
levels (~1.5-fold) accelerated adipogenesis and suppressed 
osteogenesis of BMSCs. In addition, it was demonstrated that 
miR-31, miR-27, and miR-130 all inhibited adipogenesis of 
BMSCs. A study about miR-155, miR-221, and miR 222 had 
validated that they may act as the negative regulators of 

PPAR  and C/EBP , and as a result inhibited the adipogenic 
differentiation of BMSCs [47]. 

Moreover, some other miRNAs affected directly or indi-
rectly interacted with PPAR , and performed enhancing or 
inhibition effects on adipogenesis as a result. MiR21 in-
creased adipogenesis of hBMSCs by blocking TGF  [48]. 
However, Kang et al. believed that miR-21 promoted 
preadipocytes commitment by directly targeting AP1 gene 
[49]. In addition, miR-140 stimulated adipogenesis through 
down-regulating osteopetrosis-associated transmembrane 
protein (Ostm1), which may lead to the decrease of Wnt/ -
catenin pathway [50]. Some studies explored the role of 
miR-210, miR-148a, miR-194, and miR-322 in regulating 
adipogenesis by WNT pathway [51] which were suggested 
to inhibit adipocyte formation by blocking the expression of 
PPAR  and C/EBP . 

5. miRNAs AND THE BALANCE BETWEEN OS-
TEOGENESIS AND ADIPOGENESIS 

As osteoblasts and adipocytes share BMSCs as a precur-
sor, a reciprocal association between bone formation and 
bone marrow adiposity has been noted frequently. Overex-
pression of miR-204, miR-17-5p, miR-106a suppressed os-
teoblast differentiation and promoted adipocyte differentia-
tion [52]. However, miR-637 had an opposite effect. As the 
description above, miRNAs are suggested to regulate lots of 
genes involving bone status. Their effects on the multi-
differentiation are likely to be complex. In coculture system, 
adipocytes transferred anti-osteoblastic miR-138, miR-30c, 
miR-125a, miR-31 to osteoblasts through extracellular vesi-
cles (EVs) [53]. However, it’s not clear whether EV was the 
key element in the balance of osteogenesis and adipogenesis.  

MiR-30e was induced in primarily cultured mouse BMSCs 
[54], which is crucial for maintaining the balance of adipo-
cytes and osteoblasts by targeting the Wnt/beta-catenin signal-
ing. In addition, adipogenic stimuli reduced miR-194 expres-
sion with increases in COUP-TFII expression [55]. Osteogenic 
stimuli increased miR-194 expression with decreases in 
COUP-TFII expression. Therefore, miR-194 acted as a critical 
regulator of COUP-TFII, and could determinate the fate of 
MSCs to differentiate into osteoblasts and adipocytes. MiR-
223 was involved in the reciprocal regulation of adipocyte and 
osteoblast differentiation through a novel C/EBPs/miR-
223/FGFR2 regulatory feedback loop [56]. Let-7 was proved 
to obviously promote osteogenesis and inhibit adipogenesis of 
BMSCs in vitro through the repression of high mobolity group 
AT-hook2 (HMGA2) expression [57].  

Based on the published literature, it was drawn that 
miRNA- targeted osteoblast-related gene is RUNX2, while 
miRNA-targeted adipocyte-related gene is PPAR  and 
C/EBP  [58]. MiR-17-5P and miR-106a could promote adi-
pogenesis and suppress osteogenesis by inhibiting runx2 
expression, and increasing PPAR  and C/EBP  expression.  

Most of the miRNAs were founded to inhibit or facilitate 
osteoblast differentiation and adipocyte differentiation. Even, 
some of their expression pattern overlapped more. However, 
there is still a few of miRNAs silencing both osteoblasts and 
adipocyte genes. We inferred that the ultimate biological 
effects of miRNA depended on the comprehensive aspects of 
their routine, targets, expression levels etc.  
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6. APPLICATIONS OF miRNAs IN BONE REGEN-

ERATION 

It is well known that BMSCs are excellent precursors 
suitable for regeneration. An increasing number of miRNAs 
have been identified to participate in the differentiation of 
BMSCs. MiRNAs are detected in every progress as either a 
blocker or an activator in osteogenesis. They showed great 
promise to serve as biomarkers and potential therapeutic 
targets for bone. The putative targets of miRNAs should 
been identified by bioinformatics database and luciferase 
assay. Knowledge of these miRNAs roles, pathways and 
targets in BMSCs differentiation provides an important 
foundation for their application in bone regeneration. In ex-
periments, overexpression of a specific miRNA was con-
ducted by viral-based methods with viral vectors [59], an-
tisense miRNA oligonucleotides (antagomirs), and mi-
croRNA sponges [60]. Additionally, the delivery system 
included silver nanoparticle complex [61], cell-penetrating 
peptide rich in arginine [62], and some materials with lower 
toxicity and less off-target effects.  

The findings suggested that the potential utilization of 
miRNA mimics/ inhibitors or sponge to treat bone metabolic 
disorders is just a beginning. There is a long way between 
bench to clinic. It was reported that treating osteoblasts with 
miR-30c led to coordinate effects on the expression of a clus-
ter of genes encoding components [63]. Another study con-
ducted by Chen et al. reported that newly formed bone was 
detected with anti-miR-34a transfected cells [64]. Addition-
ally, silencing of miR-542-3p resulted in bone formation by 
microCT scanning in overiectomized rats [65]. Wei et al. put 
miR-34 family into miR-34s-deficient mice and miR-34c 
transgenic mice, and found that they finally inhibited the pro-
liferation and terminal differentiation of osteoblasts [66]. In a 
hind limb uploading mouse model, microCT suggested bone 
loss was partly reversed by anti-miR-103a treatment [67].  

CONCLUSION 

Hundreds of miRNAs are expressed in BMSCs and aid in 
modulating gene expression during BMSCs formation, de-
velopment and differentiation. Most of them performed as 
negative regulators of osteogenesis through BMP/Smad, 
WNT/ -catenin, and Activin/Smad signaling pathways. 
Meantime, they have bidirectional effects on adipogenesis. 
Runx2 and PPAR  are two crucial transcriptional factors in 
osteogenesis and adipogenesis, respectively. Further, anti-
miRNAs or miRNA mimics is potential therapeutic strategy 
to repress pathological miRNAs for cellular therapies. The 
preliminary applications of miRNAs strongly suggested their 
bright future in bone regeneration.  
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