
Chinese Medical Journal  ¦  January 20, 2017  ¦  Volume 130  ¦  Issue 2 165

Original Article

Introduction

Cleidocranial dysplasia  (CCD; OMIM 119600) is an 
autosomal dominant disease that affects the skeletal system. 
Common symptoms of CCD include hypoplasia or aplasia 
of the clavicles, delayed or even absent closure of fontanels, 
midface hypoplasia, short stature, delayed eruption or 
impaction of permanent and supernumerary teeth, as well as 
other skeletal malformations, such as wide pubic symphysis, 
brachycephalic skull, and abnormal mandibular ramus and 
coronoid process.[1,2] Among the various phenotypic spectra 
of CCD, hypoplasia or aplasia of the clavicles and dental 
abnormalities are common. Panoramic radiography is crucial 
for diagnosing CCD.[3] The prevalence of CCD is about one 
in millions of live births in any gender or race.[4,5]

Previous studies reported a connection between CCD and 
the haploinsufficiency of runt‑related transcription factor 
2 (RUNX2).[6‑9] RUNX2 controls normal bone formation by 
regulating the differentiation of mesenchymal precursor cells 
to osteoblasts and the growth and maturation of osteoblasts. 
RUNX2‑deficient mice lack osteoblasts and fail to form 
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bones.[10] The RUNX2 gene has been mapped to chromosome 
6p21 and consists of several established functional domains. 
The Runt domain, an evolutionary conserved polypeptide 
motif located in the N‑terminal of RUNX2, mediates 
DNA binding and protein–protein interaction, including 
heterodimerization with the core‑binding factor subunit 
beta.[11] Adjacent to the Runt domain is the nuclear localization 
signal, which accumulates RUNX2 in the cell nucleus.[12,13] 
Furthermore, RUNX2 possesses a Q/A domain with glutamine 
and alanine repeats,[14] and the C‑terminus consists of 
a transactivation proline-serine-threonine‑rich  (PST) 
domain with abundant PST.[7] The nuclear matrix‑targeting 
signal  (NMTS) is necessary for subnuclear localization 
and protein binding in the middle of the PST domain.[15,16] 
The Val‑Trp‑Arg‑Pro‑Tyr (VWRPY) peptide that supports 
transcriptional repression comprises the last section of the 
C‑terminal.

RUNX2 mutation is not observed in approximately 30% of 
CCD patients.[12] Previous studies have identified over eighty 
heterozygous RUNX2 mutations in CCD patients.[4,13,17,18] 
RUNX2 mutations are generally located in the Runt domain, 
most of which are missense mutations. Only 10% of the 
C‑terminal mutations are missense mutations.[18,19] In the 
present study, we identified a novel RUNX2 mutation: 
c.1111dupT (p.Ser371PhefsX14), in a sporadic case.

Methods

Patient selection
A Chinese individual who presented with clinical 
symptoms of CCD was recruited. The Ethical Committee 
of Peking University School and Hospital of Stomatology 
(PKUSSIRB‑201627028) approved the study. Informed 
consent was obtained from the patient.

Genetic testing
Up to 3  ml of peripheral blood was drawn from the 
CCD‑affected patient and stored in an anticoagulation 
tube containing ethylenediaminetetraacetic acid  (EDTA). 
Genomic DNA extraction from the whole blood of the 
patient was conducted with QIAamp® DNA Blood Kit 
(Qiagen, Hilden, Germany) in accordance with the 
manufacturer’s instructions. Exons 1–8 of the RUNX2 gene 
were amplified by polymerase chain reaction (PCR) using 
previous combinations of primers.[13] PCR amplifications 
were performed in a thermal cycler  (PE 2400, Life 
Technologies, Carlsbad, California, USA) with 50 µl reaction 
volumes. Sequencing was performed at Life Technologies, 
Inc., Shanghai, China.

Plasmid DNA and mutagenesis
Plasmid vector coding-enhanced green fluorescent protein 
(EGFP): pEGFP-C1-vector and pEGFP-C1-RUNX2 plasmids 
were purchased from Youbio (Changsha, China). pEGFP-C1-
RUNX2 plasmid was PCR amplified using human embryonic 
kidney (HEK) 293T cDNA as the template and then cloned into 
the pEGFP-C1-vector between KpnI/SacII sites. The primers 
are 5’-ACTCTCGAGATGGCATCAAACAGCCTCTT-3’ 

( f o r w a r d )  a n d  5 ’ - A C T C C G C G G T C A ATAT 
GGTCGCCAAACAG-3’ (reverse). The amino acid 
duplication of RUNX2 mutation was accomplished by 
PCR amplification using pEGFP-C1-RUNX2 circular 
plasmid as the template, 5’-AACTGGGCCCTTTT
TTCAGACCCCAGG-3’ as the forward primer, and 
5’-CCTGGGGTCTGAAAAAAGGGCCCAGTT-3’ as the 
reverse primer. The construct was completely sequenced and 
used as the template in other cloning designs.

Cell culture
HEK293T cells were cultured in Dulbecco’s Modified 
Eagle’s Medium (HyClone, Logan, USA) supplemented with 
100 mg/ml streptomycin and penicillin, and 10% fetal bovine 
serum (HyClone, Logan, UT, USA), and then incubated in 
95% air and 5% CO2 at 37°C.

Western blotting analysis
HEK293T cells were seeded and transiently transfected 
with pEGFP‑C1‑vector, pEGFP‑C1‑RUNX2 ,  and 
pEGFP‑C1‑RUNX2‑mut, using Vigo Transfection Reagent.

Cells were lysed in Tris‑HCl  (pH  7.4), NaCl, and 
EDTA (TNE) buffer plus protease inhibitor cocktail 
(Roche Applied Science, Basel, Switzerland) at 4°C 
for 30  min. These supernatants were resolved through 
SDS‑PAGE gel electrophoresis after centrifugation. The 
anti‑GFP antibody was used (Santa Cruz, Dallas, USA).

In situ immunofluorescence microscopy
pEGFP‑C1‑RUNX2 and pEGFP‑C1‑RUNX2‑mut plasmids 
were separately transfected into HEK293T cells and then 
cultured for 24  h. Afterward, the cells were processed 
and washed three times with phosphate‑buffered saline 
(PBS) and 0.1% triton X‑100 for 5  min each. The 
cells were fixed with 4% paraformaldehyde, washed 
three times with PBS, and then incubated with Goat 
Anti‑mouse IgG conjugated with Alexa Fluor 555 for 1 h 
at room temperature. Prolong® Gold Antifade Reagent 
(Invitrogen, Carlsbad, California, USA) was used to mount 
the cover slides following three times washing with PBS. 
A Zeiss LSM710 (Carl Zeiss, Oberkochen, Germany) was 
used to capture immunofluorescent signals.

Transient transfection and osteocalcin promoter 
luciferase assay
HEK293T cells were seeded in 24‑well plates one day before 
transfection. Cells at 60%–80% confluence were transfected 
in 50 µl of Vigo Transfection Reagent. The pRenilla‑TK vector 
was used as an internal control. After 48 h of transfection, 
the cells were collected and measured using the luciferase 
assay system (Promega, Madison, Wisconsin, USA).

Statistical analysis
All experiments were repeated at least three times. Results 
were expressed as mean  ±  standard deviation (SD). 
SPSS software  (IBM SPSS Statistics, version  20.0, IBM 
Corporation, Armonk, New York, USA) was used for 
statistical analysis. Results were examined by Student’s 
t‑test. Statistical significance was considered at P < 0.05.
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Results

Clinical findings
An 18‑year‑old female came to the hospital with a chief 
complaint of multiple impacted teeth. The patient showed 
typical clinical symptoms of CCD, including a concave 
profile and short stature (141 cm high). However, no abnormal 
hypermobility of the shoulders was found [Figure 1a and 1b]. 
The patient did not have any family history of this disease.

Oral manifestations and radiographic features
Oral manifestations include an edge‑to‑edge occlusion 
of the anterior teeth, retention of deciduous teeth, and a 
high‑arched palate with a median pseudocleft [Figure 1c]. 
The 18‑year‑old patient had merely five permanent 
teeth (16, 14, 11, 26, and 36) erupted on her first visit.

Chest posterioanterior view revealed a bell‑shaped 
thoracic cage and short and thick clavicles  [Figure  1d]. 
Anteroposterior radiography revealed a plastic frontal sinus, 
Wormian bone, and dysplastic zygomatic bone [Figure 1e]. 
These symptoms were also previously observed in a CCD 
patient with T420I mutation in the PST domain.[20] The 
lateral cephalogram developed from cone beam computed 
tomography  (CBCT) showed maxillary hypoplasia 
[Figure 1g]. The panoramic radiography developed from 
CBCT confirmed deciduous teeth retention, permanent 
teeth impaction, and delayed development with abnormal 
roots and multiple supernumerary teeth. It also revealed 
the parallel‑sided anterioposterior borders of the ascending 
ramus, slender and pointed coronoid process facing upward, 
thin zygomatic arch and increased bone density between 
the anterior border of the ascending ramus and the inferior 
dental canal [Figure 1f]. The symptoms are consistent with 
those in the previous study.[3]

Mutation analysis
A novel single‑base pair duplication: c.1111dupT in exon 8 
was detected in the patient [Figure 2a], causing a frameshift 
mutation ending at the consequent premature stop codon 384, 
which led to a truncated RUNX2 protein comprising merely 
383 amino acids. The result was confirmed by Western blot 
analysis [Figure 2b]. The NMTS region was involved in 
this mutation.

Nuclear localization of runt‑related transcription factor 
2 mutation
RUNX2 is localized in the cell nucleus and perinucleolar 
region.[14,21,22] The NMTS‑associated subnuclear foci 
of RUNX2 are responsible for the transactivation of 
the osteoblast‑specific osteocalcin gene in osseous 
cells.[14] To identify the nuclear localization of the RUNX2 
mutation, we transfected both pEGFP‑C1‑RUNX2 and 
pEGFP‑C1‑RUNX2‑mut plasmids into HEK293T cells. 
The subcellular localization of the wild‑type RUNX2 and 
the mutation was observed by in situ immunofluorescence 
microscopy.

The RUNX2 mutation and wild‑type RUNX2 accumulated 
in the nuclei of HEK293T cells [Figure 3]. However, the 
RUNX2 mutation was also observed in the perinuclear 
region and cytoplasm, which indicated that the subcellular 
compartmentalization of the RUNX2 mutation was partially 
perturbed.

Transcription activation’s abilities
To examine the effect of the RUNX2 proteins on the 
transactivation activity of HEK293T cells, we conducted 
DNA co‑transfection experiments in HEK293T cells with 
the RUNX2‑responsive osteocalcin promoter (p6OSE2‑luc) 
as the reporter. Wild‑type RUNX2 increased the promoter 

Figure 1: Typical clinical and radiological findings in the CCD patient. (a) Shoulder mobility test revealed that the patient’s shoulders cannot be 
brought closer. (b) Lateral photograph of the patient showed hypoplasia of the maxilla and a concave profile. (c) Oral manifestation revealed retention 
of deciduous teeth and a high‑arched palate with a median pseudocleft. (d) Chest PA revealed thick and short clavicles with a bell‑shaped thoracic 
cage. (e) Anteroposterior cephalogram revealed a Wormian bone (★) at the lambdoidal sutures, aplasia of the frontal sinus, and dysplasia of the 
zygomatic bone. (f) Panoramic radiography developed from CBCT confirmed retention of deciduous teeth, multiple permanent teeth impaction 
and supernumerary teeth as well as the parallel‑sided borders of the ascending ramus. (g) Lateral cephalogram developed from CBCT showed 
hypoplasia of the maxilla and nasal bridge. CBCT: Cone beam computed tomography; PA: Posterioanterior; CCD: Cleidocranial dysplasia.
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activity in transient transfection assays, whereas the 
transactivation function of the RUNX2 mutation was 
abrogated [Figure 4].

Discussion

In the current study, we confirmed a novel RUNX2 mutation 
in a sporadic Chinese patient with symptoms of CCD. 
The mutation leading to a frameshift from codon 371 
to the premature stop codon 384 is responsible for the 
haploinsufficiency of RUNX2, and therefore causes the 
disease. The RUNX2 mutation resulted in the absence of 
the NMTS domain and C‑terminal pentapeptide VWRPY. 

The NMTS near the C‑terminal of RUNX2 comprises 
38 amino acids  (from amino acid 397 to 434), forming 
a helix-loop-helix structure.[23] According to a previous 
study, the NMTS domain is responsible for RUNX2 
retention in nuclear matrix‑associated foci and important 
for the optimal activation of the bone‑specific osteocalcin 
gene.[14] Interactions with SMADs, histone deacetylase 6, and 
Yes‑associated protein might play a role in the mechanisms 
of the NMTS‑mediating protein subnuclear distribution.[24,25] 
VWRPY interacts with a Groucho/TLE/R‑esp repressor 
protein, and osteocalcin promoter is activated through a 
VWRPY‑dependent mechanism.[21,26] The VWRPY domain 

Figure 3: Nuclear localization of RUNX2 mutation. Wild‑type RUNX2 was localized in the nuclei of HEK‑293T cells, whereas RUNX2 mutation 
was observed in the nuclei and perinuclear region (←) and cytoplasm. DAPI: 4’,6‑diamidino‑2‑phenylindole; GFP: Green fluorescent protein; 
WT: Wild‑type RUNX2; MUT: RUNX2 mutation; HEK: Human embryonic kidney; RUNX2: Runt‑related transcription factor 2.

Figure 2: Genetic sequencing and Western blot of wild‑type RUNX2 and RUNX2 mutation. (a) Sequencing results showed the heterozygous duplicate 
mutant allele T. (b) Western blot confirmed the mutation that had 138 amino acids less than the wild type. GAPDH: Glyceraldehyde‑3‑phosphate 
dehydrogenase; GFP: Green fluorescent protein; RUNX2: Runt‑related transcription factor 2.
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is not important for the retention of RUNX2 in nuclear 
matrix‑associated foci.[14] In the present study, the nuclear 
import of the RUNX2 mutant was partially abrogated, which 
does not coincide with the conclusion of Zaidi et al.[14] The 
perinuclear leak of RUNX2 mutant expression might explain 
its decreased ability in activating downstream genes as 
shown in the results of the luciferase assay. The decreased 
ability could be partly modified by increasing the dose of the 
RUNX2 mutant plasmid, implying a correlation between the 
dosage and the abrogated function of the RUNX2 mutant.

CCD has a wide spectrum of clinical symptoms. According 
to the OMIM, CCD is related to over  48 phenotypic 
features. Previous studies were performed to explain 
the genotype–phenotype correlation, but their results 
were controversial.[27‑31] A wide variation of phenotype 
expressivity even within a family with identical RUNX2 
mutation was observed.[28,31] A relationship between 
the stature and number of supernumerary teeth was 
observed.[12,31] Cunningham et  al.[19] suggested that the 
C‑terminal mutations of RUNX2 lead to a more severe 
phenotype because of the negative effects caused by the 
preservation of the Runt domain. In contrast, Bufalino 
et al.[29] implied a correlation between the region affected 
by mutations involving the Runt domain and the severity 
of dental phenotypes. Although the mutation was outside 
the Runt domain, the patient presented with severe dental 
abnormalities. Previous cases[32,33] revealed frameshift 
mutations in similar regions: c.1116_1119insC and 
c.1119delC. Both mutations demonstrated extremely 
similar craniofacial and dental phenotypes, including 
retained deciduous teeth, eruption failure of permanent 
dentition with abnormal roots, and multiple supernumerary 
teeth. However, more severe clavicle problems and spina 
bifida occulta were observed in the previous cases than 
in the present case. The difference might be attributed to 
environmental factors and epigenetic regulation including 

histone modifications and DNA methylation and copy 
number variation.

In summary, we identified a sporadic CCD patient carrying a 
novel insertion/frameshift mutation of RUNX2. This finding 
expanded our understanding of CCD‑related phenotypes. 
Future studies of RUNX2 mutations may provide further 
insights into the phenotype-genotype correlation.
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