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Peripheral Formalin Injury Induces 2 Stages of Microglial

Activation in the Spinal Cord
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Abstract: The formalin test produces 2 well-known acute phases of nociceptive behavior. Recently,

we have shown that this same formalin test produces a third phase of nociceptive behavior consist-

ing of prolonged thermal and mechanical hyperalgesia beginning days after formalin injection and

lasting for at least 3 weeks. Here we investigated the activity of 3 MAPKs (p38, ERK and JNK) in

the spinal dorsal horn following 5% formalin injection into rat hind paw. The p38 MAPK was rapidly

activated in the spinal microglia minutes after injection and the activation persisted for 1 hour. In ad-

dition, this same injury induced a secondary increase of phospho-p38 expression in spinal microglia

that was maximal 3 to 7 days postinjection. Intrathecal administration of p38 inhibitor SB203580 not

only inhibited the early acute spontaneous nociceptive behaviors, but also inhibited the long-term

formalin injury-induced mechanical hyperalgesia. Our results suggest that peripheral formalin injec-

tion induces 2 stages of microglial activation, and p38 activation in spinal microglia plays key roles in

central pain modulation in formalin test respectively for the early acute phases and the late second-

ary long-term pain state as well.

Perspective: This article presents unique properties of spinal microglial activation in a pain animal

model. This finding could potentially help clinicians to further understand the contributions of spinal

microglia to acute and chronic pain state.

ª 2010 by the American Pain Society

Key words: Microglia, spinal cord, formalin, mitogen-activated protein kinases, p38.
ain hypersensitivity, ie, hyperalgesia and/or allody-
nia attributed to neural plasticity states in the dorsal
root ganglion (DRG) and spinal cord, is a hallmark of

neuropathic pain following peripheral inflammation
and nerve lesions in humans. Recent studies implicate
not only neurons, but glial cells (microglia and
astrocytes) in the generation and maintenance of the
pain hypersensitivity.19,24,37,43,45,46 Both astrocytes and
microglia are activated in the spinal cord in almost all
animal pain models, including nerve injury, traumatic
injury, inflammatory, and bone cancer pain
models.2,3,8,12,14,16,27,29,32,38 The enhanced nociceptive
behaviors in these models could be reduced or blocked
by drugs that disrupt glial activation.15,20,24-26,31,39,45
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While glial involvement in pain facilitation is now
accepted, the mechanisms by which glia contribute to
enhanced pain transmission is not fully understood.
Several recent reports suggested that activation of
mitogen-activated protein kinases (MAPKs) in glial cells
is essential for the pathogenesis of exaggerated pain
responses.11,18,22

MAPKs are a family of serine-threonine kinases that are
part of the cellular signaling cascade activated by extra-
cellular stresses or stimuli. These signaling molecules con-
sist of extracellular signal-regulated kinase (ERK), p38,
c-Jun N-terminal kinase (JNK), and ERK5. The involve-
ment of ERK, p38, and JNK activation in neurons and glial
cells in spinal cord induced by nerve injury or inflamma-
tion have been demonstrated recently,19,37,43,49,50 with
the notable exception of ERK5.28 For example, ligation
of the L5 spinal nerve resulted in activation (phosphoryla-
tion) of p38 in spinal microglia. This activation was re-
quired for the development of tactile allodynia that
could be suppressed by intrathecal administration of
the p38MAPK inhibitor SB203580.19,43

Subcutaneous formalin injection is widely used to
study pain mechanisms and to evaluate the analgesic ac-
tion of various endogenous and exogenous substances.
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Injection of formalin into the rat’s hind paw produces
2 well-known phases of nociceptive behavior. The first
phase (acute phase) lasts about 5 minutes. After a short
quiescent period, the second phase (tonic phase) begins
and lasts approximately 40 minutes. As expected, forma-
lin injection into the paw induced a rapid (5 minutes
after injection) increase in phosphorylated p38 MAPK
(p-p38) in spinal cord microglia, and pretreatment with
p38 MAPK inhibitors suppressed the characteristic
second (tonic phase) phase of nociceptive reflexes.37

However, in addition to the 2 phases of spontaneous
nociceptive behaviors, formalin-injected tissue injury
produces a third phase of nociceptive behaviors charac-
terized by secondary prolonged thermal and mechanical
hyperalgesia beginning days after the injection and last-
ing for about 3 weeks.9,34,40,44 This long-term time course
was closely related to microglial activation in the spinal
cord as determined by OX-42 labeling and morphologi-
cal changes.8 In the present study, we report that p38,
but not ERK or JNK, was activated in microglia in the
spinal dorsal horn days after injection and this late acti-
vation was maintained for weeks. Moreover, the activa-
tion of p38 was required for not only the early second
phase of spontaneous nociceptive behaviors, but also
for the third phase of the formalin-induced long-term
mechanical hyperalgesia.
Methods

Animals and Treatments
Male adult Sprague-Dawley rats weighing 200 to 225 g

(Vital River Laboratory Animal Technology Co. Ltd, Bei-
jing) were used, and all protocols for the experiments
were approved by the Animal Care and Use Committee
of Peking University Health Science Center and certified
that the care and use of animals conformed to applicable
national/international guidelines. All rats were housed
at temperature of 22 6 1�C on a 12-hour light/dark cycle
with free access to food and water. Experimental rats in
the formalin model group received subcutaneous injec-
tions of 100 mL 5% formalin (diluted in 0.9% saline) into
the plantar surface of the right hind paw. The control
group rats were injected with 100 mL 0.9% saline instead
of formalin or received no treatment. Survival times were
30 minutes, 60 minutes, 6 hours, 1 day, 3 days, 7 days, and
14 days postinjections, and lumbar spinal cord was taken
for immunohistochemical and western blotting analysis.

Chronic lumbar intrathecal (it) catheters were im-
planted according to the procedure described by Størkson
et al.35 Briefly, under adequate anesthesia with sodium
pentobarbital (40 mg/kg, ip), a polyethylene catheter
Figure 1. Peripheral formalin injection induced p38 activation in th
ing images of p-p38 expression in the spinal dorsal horn from naı̈ve,
bar: 50 mm. (D), p-p38 immunoreactivity increased in the ipsilateral si
100 mm. (E-G), Merged images of double immunofluorescent labels o
(red, NeuN), and astrocytes (red, GFAP), p-p38 was expressed in mos
(H), Representative bands and quantification of Western blot analys
spinal cord after formalin injection (left) while total p38 showed no i
normalized against a control protein, b-actin. *P < .05, 1-way ANOVA
control, n = 4.

:

(PE-10, 20 cm, Warner Instruments, Hamden, CT) was in-
troduced in the subarachnoidal space via the L5/6 inter-
vertebral space and advanced rostrally 3.0 to 3.5 cm in
order to reach the lumbar enlargement. The catheter
was sutured to the fascia, tunneled subcutaneously on
the back of the rats, and its proximal end was externalized
in the occipital region. Animals were allowed to recover
for at least 5 days after implantation, and a rat that had
signs of neural dysfunction (1 of 43) was removed from
the study. The p38 inhibitor (SB203580; Calbiochem, La
Jolla, CA) or vehicle was delivered intrathecally (with the
same volume of 10 mL) and the catheter flushed with 12
mL of saline. SB203580 was dissolved in dimethylsulfoxide
(DMSO), and diluted in 0.9% saline when used.
Behavioral Analysis

Acute Spontaneous Nociceptive Behavior

The animals were placed in a 30�30�30-cm clear plas-
tic box with a mirror below the surface to allow an unob-
structed view of the paws. To allow familiarization with
surroundings, rats were habituated in the test chambers
singly for 20 minutes for 3 days. On the test day, follow-
ing 5% formalin injections, rats were returned to the ob-
servation chamber immediately, and flinching behaviors
were monitored with blinded condition for 60 minutes.
The flinches were recorded as the number of flinches
for 5-minute periods and the total number of flinches
during phase 1 (0–9 minutes) and phase 2 (10–60 min-
utes). SB203580 (10 mg, 30 mg – 6 rats) or vehicle (6%
DMSO, diluted in saline – 6 rats—same concentrations
of DMSO and saline as used for SB203580), was given
20 minutes prior to the formalin injection.

Secondary Chronic Mechanical Hyperalgesia

Animals received subcutaneous injections of 100 mL 5%
formalin into the plantar surface of the right hind paw, 6
rats for each group. SB203580 (10 mg), or vehicle (2%
DMSO) was first delivered intrathecally 20 minutes prior
to the formalin injection, and repeated once a day at 10
AM until day 7. The mechanical threshold for nociceptive
response was conducted as described previously,33 and
all tests were conducted before treatment and on day
1, 3, and 7 pre drug delivery under blind conditions.
Briefly, the rat was habituated to standing on its hind
paws and against the tester’s gloved hand. The with-
drawal threshold of the hind paw in response to mechan-
ical stimulation was determined by using a hand-held
force transducer (electronic anesthesiometer; IITC Life
Science, Woodland Hills, CA) adapted with 0.5-mm diam-
eter polypropylene rigid tip. The area tested was the
e lumbar spinal dorsal horn. (A-C), Representative immunostain-
saline and formalin-injected group at day 3 after injection. Scale
de of the dorsal horn at day 3 after formalin injection. Scale bar:
f p-p38 (green) with markers of microglia (red, OX-42), neurons

t microglia but rarely in neurons or astrocytes. Scale bars: 50 mm.
is showed persistent increased p-p38 protein level in the lumbar
ncreases (right). Quantification of p-p38 and total p38 level were

and Tukey post hoc test, compared with the naı̈ve (uninjected)



Figure 2. Peripheral formalin injection did not increase p-ERK and p-JNK expression. (A, B), p-ERK immunoreactivity in the ipsilateral
side of the spinal dorsal horn at day 3 from saline- and formalin-injected rats, and a very small number of p-ERK positive cells were seen
(arrows). Scale bar: 50 mm. (C), The double immunofluorescent label with NeuN indicated that p-ERK positive cells (arrowheads) were
neurons. Scale bar: 50 mm. (D, E), Representative bands and quantification of Western blot analysis showed no significant changes on
p-ERK and p-JNK protein levels in the lumbar spinal cord after formalin injection. Quantification of p-ERK, total ERK, p-JNK, and total
JNK protein levels were normalized against loading control b-actin. n = 4.
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dorsal surface of right hind paw, between the third and
fourth metatarsals. The investigator was trained to apply
the tip perpendicular to the central area of the hind paw
with a gradual increase in pressure. The force in grams
needed to elicit clear paw withdrawal indicative of noci-
ceptive response was recorded 4 times for each animal at
1-min intervals, and the average of the 4 values was used
as the withdrawal threshold.
Immunohistochemistry
Animals (3 to 5 rats at each time point) were anesthetized

with an overdose of pentobarbital sodium (100 mg/kg, ip)
and euthanized by transcardiac perfusion with 250 mL
body temperature 0.1 M phosphate-buffered saline (PBS,
pH 7.4), followed by 300 mL ice-cold 4% paraformalde-
hyde/4% sucrose in 0.1 M PB, pH 7.4. After perfusion,
the lumbar spinal cord (L4–5), about 4 mm long was
removed, postfixed in 4% paraformaldehyde fixative
for 4 hours, and then placed in a 30% sucrose solution
(in 0.1 M PBS) overnight at 4�C. Thirty-micron thick spinal
cord sections were transversely cut on a cryostat and suc-
cessively transferred to 48 well-plates for free-floating
immunohistochemical staining. The sections were
blocked with 3% normal goat serum (NGS) and then in-
cubated for 48 hours at 4�C in the primary antibody
(anti-phospho-p38 1:200, anti-phospho-p44/42 (ERK)
1:200, anti-phospho-JNK 1:200; Cell Signaling, Beverly,
MA). Binding sites were visualized with FITC-conjugated
secondary antibody (1:200; Jackson ImmunoResearch,
West Grove, PA).

For double immunofluorescence, tissues were incu-
bated with a mixture of primary antibodies with mono-
clonal neuronal-specific nuclear protein (NeuN,
neuronal marker, 1:5000; Chemicon, Temecula, CA), glial
fibrillary acid protein (GFAP, astrocyte marker, 1:200;
NeoMarkers, Fremont, CA) and OX-42 (CD11b, microglia
marker, 1:200; Serotec, Indianapolis, IN). Following the
incubation, spinal sections were washed and incubated
for 2 hours at room temperature in a mixture of FITC-
and TRITC-conjugated secondary antibodies (Jackson Im-
munoResearch, West Grove, PA). The stained sections



Figure 3. Effect of intrathecal administration of SB203580 (p38 inhibitor) on the formalin-induced secondary long-term mechanical
hyperalgesia. (A), The paw-withdrawal thresholds to mechanical stimulation were measured at day 0, 1, 3, 7 in naı̈ve (n = 6) and
formalin-injection rats (n = 6). Formalin injection resulted in secondary mechanical hyperalgesia as measured on day 3 and day 7.
(B), The decreased paw-withdrawal thresholds were reduced by SB203580 administration once a day for 7 days (n = 6), compared
to the vehicle-treated group (n = 6). Each point represents the mean (in grams) 6 SEM of paw-withdrawal threshold. *P < .05,
***P < .001, ANOVA for repeated measures and Student’s t test (compared with the corresponding control group).
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were examined with an Olympus (BX51, Tokyo, Japan)
fluorescence microscope, and images were captured
with a CCD spot camera. The image enhancement was
performed by using Adobe Photoshop 10.0. In our exper-
iments, replacement of primary antibody by normal
serum or PBS resulted in no staining.

Western Blots
Rats (4 rats at each time point) were deeply anesthe-

tized with sodium pentobarbital (100 mg/kg, ip), then
decapitated. The spinal cord segments L4–5 (lumbar
enlargement) ipsilateral to the injection were removed
rapidly via hydroextrusion and homogenized in lysis
buffer (20 mM Tris buffer, pH 7.6, containing 150 mM
NaCl, 1% NP-40, 5% sodium deoxycholate, 1 mM EDTA,
2 mM sodium orthovanadate, 1 mM PMSF, phosphatase
and protease inhibitor cocktail; Sigma, St. Louis, MO).
The homogenate was centrifuged at 15,000 g for 45 min-
utes at 4�C. The protein concentration of tissue lysates
was determined with a BCA Protein Assay Kit (Pierce,
Rockford, IL). Twenty-mg aliquots were subjected to
12% SDS-PAGE, and proteins were transferred electro-
phoretically to PVDF filters (Millipore, Bedford, MA). Af-
ter blocking with 5% nonfat milk in Tris-buffered saline
(TBS) containing 0.1% Tween-20 for 1 hour in room tem-
perature, the membranes were incubated with antibody
to phospho-p38, phospho-p44/42 (ERK1/2), phospho-
JNK, total p38, total p44/42 (ERK1/2), total JNK(1:1000,
in 5% BSA; Cell Signaling, Beverly, MA) overnight at
4�C. After washing, the antibody-protein complexes
were probed with HRP-conjugated secondary antibody
(1:10000; Jackson), developed in ECL solution for 3 min-
utes, and exposed onto Kodak hyperfilms. The intensity
of immunoreactive bands was quantified using NIH
ImageJ 1.38 software, normalized to the density of inter-
nal control (b-actin), and expressed as fold changes as
compared to control group.

Statistical Analysis
All data are presented as mean 6 SEM. Statistical

significance was calculated using Student’s t-tests or
1-way ANOVA for western blot analysis or ANOVA for
repeated measures for behavior test using SPSS software
(version 11.5; SPSS Inc, Chicago, IL). Differences were
considered to be significant when the critical value
reached a level of P < .05.

Results

Intraplantar Formalin Injection Induced
a Long-Lasting Activation of p38 MAPK
in the Spinal Microglia

Few p-p38 immunoreactive cells were found in the
spinal cord from naı̈ve or saline-injected rats (Figs 1A,
1B). P-p38 protein level was almost undetectable before
formalin injection by western blot. However, a marked
increase in p-p38 labeled cells was observed in the medial
portion of the ipsilateral dorsal horn 3 days after forma-
lin injection (Figs 1C, 1D). The increased p-p38 was mostly
found in microglia as can be seen in the double labeling
(Fig 2E). A few neurons were labeled with p-p38 as well
(Fig 1f) while astrocytes were mostly unlabeled (Fig
1G). The immunostaining result was confirmed by West-
ern blots, which showed a significant increase in the
amount of p-p38, but not total p38 protein 3 to 7 days
after formalin injection (Fig 1H).

However, no significant change was observed in p-ERK
or p-JNK as determined by immunohistochemistry or
Western blot at the time points measured following
formalin injection (Fig 2).

P38 Activation and Formalin-Evoked
Secondary Chronic Mechanical
Hyperalgesia

We have previously reported that formalin-injected tis-
sue injury produces a third phase of nociceptive behaviors,
both long-term thermal and mechanical hyperalgesia last-
ing for about 3 weeks.9 In the present study, we tested the
mechanical nociceptive threshold on the dorsal surface
(formalin was injected into the plantar surface) stimulated
by a 0.5-mm diameter polypropylene rigid tip. This
demonstrated mechanical hyperalgesia at day 3 and day
7 following formalin injection (Fig 3A). Based on our
immunohistochemistry and Western blot analysis, we



Figure 4. Peripheral formalin injection induced rapid and short-term p38 activation in the lumbar spinal dorsal horn. (A-C), p-p38
immunoreactivity in the ipsilateral side of dorsal horn at 30 minutes postinjection from naı̈ve, saline- and formalin-injected rats. Scale
bars: 50 mm. (D-F), Double immunostaining showed that p-p38 was mainly expressed in microglia. (J-I), Double immunofluorescence
indicated that there were also some neurons expressing p-p38 in the superficial layers of the dorsal horn (p-p38 colocalized with
NeuN). Scale bars: 50 mm. (J), Representative bands and quantification of Western blot analysis at 30 minutes, 60 minutes, and 6 hours
after formalin injection showed a rapid increase of p-p38 at 30 minutes, then a decrease at 6 hours. Quantification of p-p38 and total
p38 level were normalized against respective loading control b-actin. *P < .05, 1-way ANOVA and Tukey post hoc test, compared with
the naı̈ve control, n = 4.
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intrathecally applied the p38 specific chemical inhibitor
(SB203580) to investigate the contribution of p38 activa-
tion to this hyperalgesic behavior. We found that
SB203580 had no effect on basal mechanical sensitivity
(data not shown). We delivered SB203580 (10 mg) once
a day for 7 days, with the first administration 20 minutes
before the formalin injection. This treatment protocol sig-
nificantly inhibited formalin-induced long-term mechani-
cal hyperalgesia on day 7 as compared with the animals
treated with vehicle (P < .05, Student’s t test) (Fig 3B).
Intraplantar Formalin Injection Induced
a Rapid Activation of p38 MAPK in the
Spinal Microglia

To investigate whether there is an activation of p38
MAPK in the spinal dorsal horn in rats subjected to for-
malin injection during the normal time that spontaneous
behaviors are recorded immediately after —60 minutes
after formalin injection, we measured p-p38 expression
by immunohistochemistry and western blot at early



Figure 5. P38 inhibitor SB203580 reduced formalin-induced the early biphasic flinching behavior. (A), Time courses of flinching be-
havior number from 3 different treatment groups following peripheral 5% formalin injection. Each point was the mean number of
flinches 6SEM (n = 6) per 5-minute epoch. Animals pretreated with SB203580 (it) 10 mg and 30 mg showed fewer flinches compared
with vehicle-treated animals. (B), The bars showed total numbers of flinches during the 2 phases in rats treated with vehicle and dif-
ferent doses of SB203580. 30 mg SB203580 significantly suppressed phase II flinching behavior. ***P < .001, compared to vehicle group,
n = 6, 1-way ANOVA, followed by a Tukey post hoc test.
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time points. As shown in Fig 4 by immunohistochemistry,
there was little constitutive expression of p-p38 in the
spinal dorsal horn from naı̈ve rats (Fig 4A), and at 30 min-
utes following saline injection an apparent, but nonsig-
nificant increase of p-p38 labeling (Fig 4B). However, at
30 minutes after formalin injection, p-p38 was signifi-
cantly upregulated (Fig 4C). Double labeling with OX-
42 confirmed that most of the p-p38 positive cells were
microglia (Figs 4D-4F), but some labeled cells located in
the superficial layers were neurons (Figs 4G-4I). The in-
crease was maintained at 1 hour postinjection, and de-
clined at 6 hours, as measured by Western blot analysis
(Fig 4J).
P38 Activation And Formalin-Evoked
Early Biphasic Nociceptive Behavior

The 5% formalin-injected animals displayed classic
early, biphasic spontaneous nociceptive behaviors imme-
diately after injection, lasting for 1 hour. In this study, we
quantified the number of flinching behaviors per 5 min-
utes within 1 hour in 3 different treatment groups,
pretreated with SB203580 10mg, 30mg, and vehicle. As
shown in Fig 5, pretreatment (�20 min) with SB203580
(it) showed a nonsignificant decreasing trend on phase
1 (0–9 min) flinching, but significantly and dose-
responsively suppressed phase 2 (10–60 min) behaviors
relative to vehicle control.
Discussion
While several previous reports have indicated the im-

portance of p38 MAPK in enhancing pain, here we show
that activation of p38 occurs in 2 stages. The first stage
is quite rapid, increasing in spinal microglia tens of min-
utes after injection and lasting for over 1 hour, but less
than 6 hours. In addition, the formalin model produces
a secondary increase of p-p38 expression in spinal micro-
glia, increasing maximally at 3 to 7 days postinjection. In-
trathecal administration of the p38 inhibitor SB203580
not only reduces early acute spontaneous nociceptive be-
haviors of the formalin pain model, but also reverses the
formalin injury-induced long-term mechanical hyperal-
gesia. Our results suggest that the 2 stages of microglial
activation (p38 activation in microglia) play key roles in
central pain modulation in formalin test, both for the early
acute phases and the late long-term pain state as well.
Peripheral Formalin Injury Induces 2
Stages of Microglial Activation

Spinal cord microglia can be activated by peripheral in-
flammation and nerve injury. Microglial activation takes
several forms, such as changes in morphology from
ramified to amoeboid,7 increase in the expression of
microglial markers,3,7,10 and increase in the number of
microglia.6 These changes usually take days to be demon-
strated.3,6,8,13,14,16,21,27 We have previously reported that
peripheral formalin injection activated spinal microglia
as observed by changes in morphology and increases in
the expression of several immune markers (CD11b,
CD45, and MHC class I) begining from 1 to 3 days after
injection.8,10 However, microglia have recently been
shown to be activated at early times after peripheral
injury or inflammation without morphological changes,
as was characterized by increased p38 activation.17,37

Svensson et al37 reported that peripheral formalin injec-
tion could rapidly (within minutes) increase phosphoryla-
tion of p38 in microglia after formalin injection into the
paw. This activation of p38 occurred before morphologi-
cal changes. Pretreatment with p38 MAPK inhibitors
could reduce the early phases of formalin-induced paw
flinching behaviors and spinal neuronal c-fos expres-
sion.37 In the present study, we confirmed that peripheral
formalin injury induced early stage of spinal microglial
activation indicated by phosphorylation of p38 in micro-
glia within 1 hour and also showed a late stage of p38
MAPK activation 3 days to weeks after injection. These re-
sults suggest that microglia can be activated (particularly
in the early stages 0 to 24 hours) without observable mor-
phological changes, but only at later times (second stage,
3 days to weeks) acquire the morphological and immune
marker changes as well as a second wave of p38 MAPK
activation. Thus, microglia may undergo at least 2 distinct
stages of activation on the basis of their morphological
and immunological changes.10
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Nerve injury induces spinal microglial activation with
aseriesof sterotypicalmorphological changesandconsider-
able increases inOX-42 labelingatdayspostinjury.3,13,14,16,27

This contrasts with peripheral inflammation, which induces
no or very moderate morphological changes and increases
of OX-42 immunoreactivity in spinal microglia.1,17,21,38,48

Peripheral formalin injection has long been used as
a model of inflammation,5,30,41 but the injection also
produces nerve injury in the peripheral axons.21,23,36 Thus,
peripheral formalin injection induces 2 stages of spinal
microglial p38 activation; an early stage associated with
inflammation or immediate injury discharge and a late
stage associated with nerve injury.

P38 Activation in Spinal Microglia is
Required for Both Early Acute Phases and
Late Secondary Chronic Pain State

Most studies have been using CD11b (as observed with
OX-42) or Iba-1 as markers for microglial activation.
These markers show profound changes after peripheral
tissue injuries. But recently it has been accepted that
phosphorylated MAPKs (eg, p-p38 or p-ERK) are func-
tional markers that reflect the activation of microglia.
Increased phosphorylation of p38 in microglia has been
reported in a number of experimental models of inflam-
mation and nerve injury-induced pain, and inhibition of
spinal p38 activation reduced the behavioral sensitivity
in these models.17-19,37,43 In the present study,
peripheral formalin injection induced 2 stages of spinal
microglial p38 activation, and pretreatment with
p38 inhibitor SB203580 dose-dependently reduced
formalin-induced phase 2 flinching behavior numbers.
Daily delivery of SB203580 also suppressed late long-
term mechanical hyperalgesia. In our another study, in-
traperitoneal administration of minocycline (a putative
microglial inhibitor) reduced spinal microglial p-p38
expression and prevented enhanced nociceptive behav-
ior, but failed to reverse morphological and immune
marker changes on microglia (Li K et al, J Neuroimmunol,
in press). Thus, microglial activity indicated by the p-p38
expression, but not the late stage morphological and im-
mune marker changes, has a critical role in the microglia-
mediated pain mechanisms. Late-stage morphological
changes, which in some conditions were not closely asso-
ciated with pain behaviors,2,42 while a ‘‘footprint’’ of
nerve injury associated long-term microglial activation,
are neither necessary nor sufficient for the pain-
behavior enhancement.

P38 Activation in Spinal Dorsal Horn
Neurons

Activation of p38 MAPK in spinal cord in neuropathic
pain models was found exclusively in microglia, but not
in neurons or astrocytes.19,43 However, in other studies,
p-p38 was also seen in a small population of neurons in
laminae I and II when a carrageenan-induced pain model
was used.17 In the models of bee venom and incision-
induced pain models, p38 activation was also found
in neurons in the early phase of pain processes. The
most prominent increase was in laminae I–II of the dorsal
horn.4,47 The number of p-p38-IR microglia was
significantly increased from day 1, but the number of
p-p38-IR neurons was significantly increased from 1
hour after bee-venom injection.4 In our study, some
p-p38 expressing neurons were also found in the superfi-
cial layer of the dorsal horn at an early time following
formalin injection, at 30 and 60 minutes after injection.
Altogether, the current evidence is that phosphorylation
of p38 has a distinct role in generating pain sensitivity,
and this kinase in spinal neurons may also contribute to
pain mechanisms during the early phase of formalin
injury-induced pain.
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